目次

「ロボット考学」特集について……………………………………………………………………………神谷陽介・1

解説
ロボット考学……………………………………………………………………………………………上出寛子・2
「技術者の哲学」と「社会」を繋ぐ問題設定と対話設計………………………………………江間有沙・6
社会ロボットの倫理的問題にどのように取り組むべきか………………………………………小山 虎・10
柔軟心がみえた研究や教育…………………………………………………………………………原 進・14
ロボット法のこれから——事故の責任、予想される法規制等……………………………………小林正啓・18
安心なロボットを考える………………………………………………………………………………新井健生・22
医療ロボティクスの倫理………………………………………………………………………………生田幸士・26

随想
日本ロボット学会への要請——近未来を見据えて——………………………………………森 政弘・29

論文
自律移動搬送ロボットのホテル・空港におけるサービス提供の可能性に関する実証試験の実施
村井亮介・松野文俊・35

洋上中継器（ASV）の開発
百留忠洋・吉田 弘・澤 隆雄・中野善之・渡辺佳孝・福田直也・中谷武志・松本 伸・芸良太郎・依田貴志・山内由章・奥田幸人・江口和樹・黒岩良太・森 英男・42

ガルバノミラーによる視線移動を用いた顕微鏡撮影のための視野拡張システム
青山忠義・金石 守・高木 健・石井 拥・長谷川泰久・50
Journal of the Robotics Society of Japan
May 2018 Vol. 36 No. 4

CONTENTS

Special issue “Transcending of Dichotomy between Regressing Mind and Progressing Technology”

On special issue “Transcending of Dichotomy between Regressing Mind and Progressing Technology”
.. Yosuke Kamiya ・ 1

Reviews

Transcending of dichotomy between regressing mind and progressing technology · Hiroko Kamide ・ 2
Design agenda and dialogue that bridges “philosophy of engineers” and “society” · Arisa Ema ・ 6
How to tackle ethical issues involving social robots · Tora Koyama ・ 10
Flexible mind appeared in research and education · Susumu Hara ・ 14
Who will be responsible when robots hurt human? · Masahiro Kobayashi ・ 18
What is ANSHIN robotics · Tatsuo Arai ・ 22
Ethics in medical robotics · Koji Ikuta ・ 26

Commentary

Demands for the robotics society of Japan — Thinking deeply about near future — · Masahiro Mori ・ 29

Papers

Field experiment of feasibility for offering service by a mobile robot in a hotel and airport · Ryosuke Murai ・ Fumitoshi Matsuno ・ 35
Development of autonomous surface vehicle · Tadahiro Hyakudome ・ Hiroshi Yoshida ・ Takao Sawa ・ Yoshiyuki Nakano ・ Yoshitaka Watanabe ・ Tatsuya Fukuda ・ Takeshi Nakatani ・ Hiroshi Matsumoto ・ Ryotaro Suga ・ Takashi Yoda ・ Yoshiaki Yamauchi ・ Yukihito Okuda ・ Kazuki Eguchi ・ Ryota Kuroiwa ・ Hideo Mori ・ 42
View expansion system for microscope photography using the observing point movement by galvano mirror · Tadayoshi Aoyama ・ Mamoru Kaneishi ・ Takeshi Takaki ・ Idaku Ishii ・ Yasuhisa Hasegawa ・ 50
お知らせ目次

□学会からのお知らせ
・追悼 内山隆氏を悼む ... お知らせ 2
・2019年度役員候補者推薦のお願い ... お知らせ 4
・2019年度代議員立候補のお願い .. お知らせ 5
・終身会員制度のご案内 .. お知らせ 6
・新しい和文誌論文査読システムに関してのお知らせ お知らせ 7
□カレンダー ... お知らせ 11
□主催行事のお知らせ
・第36回日本ロボット学会学術講演会 ... お知らせ 13
・第24回ロボティクスシンポジア .. お知らせ 15
・IRH2018 .. お知らせ 17
・セミナーのご案内 .. お知らせ 21
□共催・協賛行事のお知らせ
・本会共催・協賛・後援・協力行事 .. お知らせ 27
□理事会報告 .. お知らせ 30
□新入会員 .. お知らせ 30
□英文論文集のページ
・Call for Papers: Special Issue on Robot Vision for Dexterous Manipulation and Interaction ... お知らせ 31
・Call for Papers: Special Issue on Cyborg and Bionic Systems お知らせ 32
・ADVANCED ROBOTICS Vol. 32 No. 5 Graphical Abstract お知らせ 33
□有料広告 .. お知らせ 34
□刊行物のご案内 .. お知らせ 35
□総会報告 .. お知らせ 37
学会からのお知らせ

追悼
内山隆氏を悼む

・昭和22年12月19日生まれ
・昭和45年3月 東京工業大学 工学部機械工学科卒業
・昭和48年3月 東京工業大学大学院 生産機械工学科修士課程修了
・昭和48年4月 富士通株式会社入社 株式会社富士通研究所転勤
・平成2年6月 同社 通信・宇宙研究部門 宇宙メカトロニクス研究部長
・平成7年3月 博士（工学）（東京工業大学）
・平成9年4月 - 平成14年3月 東京工業大学客員教授
・平成12年9月 同社ベリフェラルシステム研究所長
・平成14年6月 同社取締役（兼）ベリフェラルシステム研究所長
（兼）ストレージシステム研究所長
・平成17年4月 - 平成19年3月 社団法人日本ロボット学会会長
・平成18年6月 - 平成22年6月 RSi(Robot Service initiative)コンソーシアム代表
・平成19年 日本ロボット学会フェロー
・平成19年 経済産業省「今年のロボット大賞」優秀賞受賞
・平成21年6月 株式会社富士通研究所顧問 FDK株式会社 常勤監査役 就任
・平成23年4月 - 平成25年3月 日本工学会監事
・平成24年6月 FDK株式会社 常勤監査役 退任
・平成25年6月 株式会社富士通研究所顧問 退任
・平成30年3月 日本ロボット学会名誉会長
・平成30年3月16日 逝去 享年72歳
追悼
内山隆氏を悼む

東京大学名誉教授 佐藤 知正

巨大なロボット界の推進力を失った。内山隆氏の訃報に接し、筆者の頭を最初にぎたのは、この喪失と痛恨の思いであった。

内山隆氏は、2005年度から2006年度まで日本ロボット学会の会長でありられた。その時期、私は副会長として、内山隆氏と活動を共にさせていただいた。その行動は、野球のピッチャーで例えると、狙いを定めたスイートスポットに打撃を投げ込むといった印象であった。例えれば、ロボットの自動車との連携が将来重要になるとの判断から、日本自動車技術会と連携をとする研究会を立ち上げられ、将来的、日中韓との連携が国際的に重要になるとの判断され、日中韓のワークショップを立ち上げられ、推進された。ロボットの方向性に関して経済産業省と協力して、ロボット学会としての技術ロードマップ策定委員会を立ち上げられた。などなど、現時点において、より重要性が増している事項に関して、この時点での重要性を認識・判断され、一貫的にその具現化に専念された。その先見性と、推進力にいまさらながら感嘆する次第である。また、内山隆氏のその当時の活動やその後の活動は、ロボット界や日本ロボット学会に非常に深い影響をもたらされての結果であり、その発展に心をくんみていてであったことを付記しておきたい。この推進力を失った損失は、その個性的な魅力をもった人物を失ったことといまざるを得ず、痛恨の極みである。

思えば、私が内山隆と最初にお会いしたのは、1983年ごろで、宿舎連研究所でマイクロアームを見学させていただいた時にであった。米粒に石を書いたり、豆腐をつまみあげるデモなど、先進的な取組みに驚くとともに、磁気ディスクヘッドの組み立てが目標であると聞いて、なるほど重要な応用分野であると認識した次第である。内山隆氏は、筆者も参画させていただいた極限作業ロボットの研究開発（1983年〜1990年）では、単眼移動ビジョンによる運動立体視の画像処理や、移動ロボットのプラニングの研究に取り組み、その後は宇宙ロボットの研究に関連して、宇宙ロボットシミュレータや技術試験衛星7号に搭載したアームによるコネクタのめぐり作業の研究にとりかれた。今や、新しい分野に果敢に挑戦される姿に驚嘆していた次第である。1994年に食事搬送ロボットの研究を開発されてからは、サービス分野のロボットに注力され、研究者が自分たちで改良したい要求に答えられるヒューマノイドロボット（HOBシリーズ、1993年）を研究開発されて売り出されたり、iモードで外出先から操作できるロボット（MARON-1、2003年）に写真付付や、家庭ナビなどの機能を備えるなど、先進的すぎるほど先進的な活動を、文字通り分野を切り開かれて実施された。さらに、その後は、ロボットの実用化を、ショッピングセンターや案内や受付などを行うサービスロボットenon（2005年）や、子どもの型ロボット（2010年）などにおいても追及された。2002年に富士通研究所の取締役に就任されてからは、光磁気ディスク、ハードディスク、電子ペーパーや、来るべきユビキタス情報処理の時代を先導する研究開発をも幅広く推進されたもので、その底知れぬ推進力には、ただただ圧倒されるばかりであった。

内山隆氏のロボットに対する取り組みは、2014年の安倍総理のロボット革命宣言をきっかけとする今後のロボットブームで、再認識され実用化がすみつつあるロボットを、まさに先取りした活動であった。これらの先進的な試みを、ロボットの推進期にあって、果敢にチャレンジし続けられた先見性と推進力に感服し、よくぞやったものよ、ある意味うらやましいと思う。いつまでも、我々の頭に残る方である。その方を失ったこと、痛恨の極みである。

しかしながら、現在、日本のロボット界は、2014年のロボット革命宣言をきっかけとして、また深刻な人手不足を反映して、活況を呈しつつある。社会からロボット導入が真剣に求められている。工場のみならず、物流やホテル、施設や家庭など、まさに“21世紀はロボットの世紀”なるべく、ロボットの実用化が進みつつある。

この潮流をとらえ、内山隆氏が生前に追求された意思を継ぎ、新たな推進力をもってロボットの学術および産業展開の新たな姿ををお見せすることに注目する決意を新たに、内山隆氏のご冥福をお祈りしつつ、筆をおきたい。
2019年度役員候補者推薦のお願い

日本ロボット学会 役員推薦委員会
委員長 曽根原 光治

日本ロボット学会（以下本学会という）では、現役員22名の内13名が2019年3月をもって任期満了になりますので、今回、改選のための準備を開始することとなりました。本件は役員選任規程によって行われます。

この役員選任規程では、広く正会員の皆様から役員（理事・監事）の推薦を受け入れ、かつ現役員からの推薦を合わせて、役員候補者が選ばれることとなっております。候補者は、最終的に代議員を構成員とする総会にて新役員に選任されます。

つきましては、下記の要領で役員候補者をご推薦下さいますようここに御願い申し上げます。

1. 推薦方法
 (1) 役員（被推薦者）の資格
 ・本学会正会員であること／本学会の活動分野について学識経験があること
 ・本学会の運営に十分な見識を有すること／本学会正会員3名以上の推薦があること
 (2) 推薦の手続き：下記2に示す「役員候補者推薦書」を提出
 (3) 提出期限：2018年6月22日（金）
 (4) 提出先：〒113-0033 東京都文京区本郷 2-19-7 ブルービルディング2階
 一般社団法人 日本ロボット学会 事務局 役員推薦係
 （封筒の表に役員候補者推薦書と朱記のこと）
 (5) 問合せ先：事務局総務 水谷 （E-Mail：soumu@rsj.or.jp）

2. 役員候補者推薦書
 候補推薦書はA4用紙を用い、下記の内容について記載ください。
 (1) タイトル：「役員候補者推薦書」，(2) 推薦者者者者者者：氏名，会員番号，印，勤務先，住所，電話，Eメールアドレス，(3) 代表者以外の推薦者：氏名，会員番号，印，勤務先，住所，(4) 候補者氏名（ふりがな），会員番号，印，(5) 候補者の勤務先，所属および職名（勤務先を有しない場合には現在の業務），
 (6) 候補者の連絡先：住所，電話，Eメールアドレス，(7) 候補者の略歴：200字以内，(8) 候補者の本学会での活動歴：200字以内，(9) 推薦理由：200字以内

3. 関連規程
 日本ロボット学会定款，役員選任規程，役員候補推薦規程は日本ロボット学会HP（https://www.rsj.or.jp）にて公開しております。

以上
2019年度代議員立候補のお願い

日本ロボット学会 代議員選挙管理委員会
委員長　曾根原 光治

日本ロボット学会（以下本学会という）では、現代議員57名の内27名が2019年2月をもって任期満了になりますので、今回、改選のための準備を開始することになりました。本件は代議員選挙規程によって行われます。この選挙規程では、広く正会員の皆様から立候補頂き、正会員による選挙により選任されることとなっております。

つまりまして、下記の要領で立候補を募りますので、よろしく御願い申し上げます。
なお、一般社団法人における代議員は、理事会の監督等を行って頂く等、本学会における重要な役目を担って頂くことになりますので、積極的な立候補を御願いします。

1. 立候補方法
（1）代議員立候補の資格
・本学会正会員であること
（2）立候補の手続き：下記2に示す「代議員立候補届」を提出
（3）提出期限：2018年6月22日（金）
（4）提出先：〒113-0033 東京都文京区本郷2-19-7 ブルービルディング2階
一般社団法人日本ロボット学会 事務局 代議員立候補係
（封筒の表に代議員立候補届と朱記のこと）
（5）問合せ先：事務局総務 水谷 （E-Mail：soumu@rsj.or.jp）

2. 代議員立候補届
代議員立候補届はA4用紙を用い、下記の内容について記載ください。
(a) タイトル：「代議員立候補届」、(b) 推薦者の氏名（ふりがな）、会員番号、印、連絡先（もしくは推薦する組織／委員会名、代表者氏名、印、連絡先）、(c) 立候補者氏名（ふりがな）、会員番号、印、連絡先、所属および職名（勤務先を有しない場合には現在の業務）、(d) 略歴：200字以内
※ (b)注：立候補には正会員2名以上の推薦、組織からの推薦、委員会からの推薦、のいずれかが必要です。

3. 関連規程
日本ロボット学会定款、代議員選挙規程、代議員立候補規程は日本ロボット学会HP（https://www.rsj.or.jp）にて公開しております。

以上
終身会員制度のご案内

＜ご案内＞
日本ロボット学会は、会員資格として終身会員を設けております。趣旨は、65歳以上の方で、経済的な負担をかけない形で、続けて学会活動に参加を願う方及び終身会員として学会活動にご参加を頂きたくというものです。下記の条件を満たす方で、正会員から終身会員への種別変更の申請を頂いた方につき、理事会での審議の上、終身会員と認定させて頂きます。下記の終身会員の特典、無効化事項および終身会員への移行に伴う年会費の支払条件をご確認の上、ご検討頂ければ幸いです。

＜終身会員になるための条件＞
1）65歳以上の正会員
2）種別変更申請時点で常勤職を持たない方
3）種別変更申請時の年齢までの年会費を納入済みであること

＜終身会員の特典と無効化事項＞
● 特 幸
1）種別変更申請のあった年度の次の年度分からの年会費の支払が免除されます。
2）下記の無効化事項を除き、学術講演会や講習会等の参加費の会員価格、日本ロボット学会誌および英文誌
“Advanced Robotics”の電子購読等の会員専用サービスは引き続き提供させて頂きます。
● 無効化事項
1）学会誌冊子の配布を停止させて頂きます。ただし、最新号以外の解説記事および論文は、J-Stageにて電子
閲覧できます。また、会告記事は、学会HPより最新版のものをご覧いただけます。
2）定款第5条に定める代議員の選挙権、被選挙権および立候補権が無くなります。
3）定款第5条10項に定める各種書面の閲覧要求の権利が無くなります。

＜終身会員への移行に伴う年会費の支払条件＞
正会員から終身会員への種別変更を申請された時点の年度までの年会費はお支払い頂きます。また申請時点の年度
以前の年度分の未納会費についてもお支払い頂きます。その上で、種別移行が受理された場合、申請時点の年度の次
年度分からの年会費を免除させて頂きます。また申請時点までに、次年度分の年会費を前納頂いていた場合には、前
納された年会費を返金させて頂きます。なお、日本ロボット学会の年度は、1月1日〜12月31日となっております。

＜申請手続き＞
正会員から終身会員への種別変更をご希望の方は、下記の項目をご記入の上、下記事務局宛てにご返送ください。
頂いた申請については、理事会にて審議させて頂いた上で結果を連絡させて頂きます。

会員番号:
会員氏名:
生年月日: 年 月 日
住所等の最新の会員情報に関しては、学会HP会員専用サービス(http://www.rsj.or.jp/services/index)より改訂
頂ければ幸いです。

＜申請の送付先および本件に関する問い合わせ先＞
一般社団法人 日本ロボット学会 事務局 会員管理係
Email: service@rsj.or.jp Tel:03-3812-7594 Fax:03-3812-4628
〒113-0033 東京都文京区本郷2-19-7 ブルー・ビルディング2階

以上
新しい和文誌論文査読システムに関してのお知らせ
2014年3月17日から和文誌論文の投稿システムと査読基準が変わりました!!

日本ロボット学会誌への論文投稿について

2014年3月17日より日本ロボット学会論文誌（和文誌）は新しく生まれ変わりました。大きな改革は以下の2つです。

1. 論文評価の多様化
2. 論文投稿査読システムScholarOne Manuscriptsの導入

論文評価の多様化を実現することによって、様々な評価軸で投稿論文を評価できるシステムを導入しています。このため、従来の査読基準では採録が難しかった分野の論文も別の評価軸で評価される内容であれば採録されるようになりました。

また、論文投稿査読システムScholarOne Manuscriptsの導入は、多様な評価軸での査読においても、査読プロセスの効率化/省力化を図り、加えて、採録までの期間を短縮することができると期待されます。（詳細に関してはhttp://www.rsj.or.jp/blog/archives/4852をご覧ください。）

このように、日本ロボット学会論文誌（和文誌）はこれまで以上に魅力ある論文誌へと改革が行われました。新しく生まれ変わった日本ロボット学会論文誌への投稿をぜひご検討ください。皆様からの積極的な論文投稿をお待ちしております（参照：http://www.rsj.or.jp/journal/before_submission）。

論文査読小委員会委員長からのメッセージ

＜ロボット学の知の集積＞

このたび、日本ロボット学会の和文誌論文査読システムが刷新されました。日本ロボット学会は、1983年の設立以来30年を超える歴史を有し、現在に至っています。その間に、ロボットは様々な分野に広がり、多様な目的も持つようになりました。このようなダイナミックな変化に対応して、今後のロボット学の知の集積するべき学会誌は、従来にも増して重要な役割を担っております。ロボットに関する知を、可能な限り多様に幅広く記載し、知の継承に役立つことが学会の一つの使命と思われます。そこで、(1)要素、(2)システム設計・構築、(3)人材育成・社会、(4)実証実験の4分野を設立し、ロボットに関する新しい領域を積極的に掲載したいと考えます。

このように分野を設定し、各分野において評価を明確にすることによって、ロボット研究・開発に関する多様な知を日本ロボット学会に集積します。たとえば、ロボット作りの経験知は、多くの会員にとって極めて有用です。また、人材育成の方法を共有することなどが望まれます。このような知の集積は、世界的にもユニークであり、ロボットの実用化を促進すると期待されます。多くの会員の方々が多様な論文を日本ロボット学会に投稿することによって、幅広いロボットの知の結集がこれから始まります。

会員皆様のご理解とご協力をお願い致します。

日本ロボット学会誌 論文査読小委員会委員長 川村貞夫（立命館大学）
日本ロボット学会論文誌 検証の方針と基準

論文は（A.）新規性，（B.）有用性，（C.）提案性 の3つの評価を軸として検証されます。それぞれの評価軸の定義を以下に示します。

A. 新規性：ロボットに関する科学と技術の全般を対象とし，新たな知見などが含まれていること。
B. 有用性：ロボットを利用して問題解決等に有用であること．ただし，実用化以前の萌芽的な内容も評価する．
C. 提案性：ロボティクスに寄与する新しい学術・技術領域，コンセプト，システム概念などが提起されていること。

また，論文を（1）要素分野，（2）システム設計・構築，（3）人材育成・社会，（4）実証実験 の4分野に分類し，検証小委員会を分野ごとに独立させて，検証に際して分野の特殊性を考慮して評価を行います．以下に，各分野の検証の方針と基準を示します（上記の評価および分野は会誌掲載時に明記されます）.

皆様の積極的な論文投稿をお待ちしております．

(1) 要素分野

ロボットは，様々な要素を有機的に結合し，各要素の特性を生かした動的システムである。要素分野では，センサー，コンピュータ，アクチュエータ，機械，モデリング，制御，アルゴリズム，ソフトウェア，インターフェイス，認知・認識，知能等の基幹要素に関する科学・技術を含む幅広い論文を検査対象とする。検証方針としては，論文取扱規則で定義されている新規性，有用性，提案性を軸として評価する。

他の３分野（システム設計・構築，人材育成・社会，実証実験）に適する論文以外のすべての論文はこの分野に投稿いただきたいくだ。

(2) システム設計・構築分野

これまで学術的な意義が十分に認められていない実用システムの設計・構築手法に価値を見出し，研究開発を促進するための検証基準を定義したおことで，産業競争力の強化に結びたい。例えば，下記の総合により，社会で求められている課題の例示，それを解決する技術開発，実システムの設計・構築，それらを支える理論の研究活動を，正のスパイラルで結合し，産学官のコミュニティの醸成を牽引する論文分野を目指す。

1. 実社会で実用的に稼働しているシステムについて，開発目的に対するスペックイン，その投資効果に対する技術的，理論的考察，目的に対して過不足のない設計とその設計手法
2. システムが複雑化し，これまで重要な技術として価値があるとは十分には認められていなかったシステムの設計手法
3. システム構築を迅速化・低コスト化する手法の技術的価値の検討
4. これまでの価値基準では技術的革新性がないと思われるが，うまく動作している新しい応用システムの事例報告（うまく動作しない事例の報告）．ただし単なる「作ったり出来ましたという報告」ではないこと
5. 上記の④に対する科学的・工学的な視点から価値を高める議論を促進すること

(3) 人材育成・社会分野

人材育成

ロボット教育（ロボットを使った教育，およびロボット工学の教育）やロボットを用いた人材育成は，ロボットの動きが人の目を引きやすい，理解しやすい，また，ロボット技術が様々な技術の集合体であるという理由から，小中学校の理科教育から企業技術者の人材育成まで，幅広い学習者を対象として活用されています。また，ロボット工学が総合的な学問であることから，課題発見能力や自己解決能力の涵養の

JRSJ Vol. 36 No. 4 May, 2018
構成論的な教育に適しているという特徴があります。
しかしながら、教育や人材育成の対象である人間のコントロールが困難であること、その結果、教育効果の定量的評価が困難であること等的理由から、これまで教育や人材育成手法は、工学分野では学術的な評価の対象になっていませんでした。その結果、ロボット教育や人材育成手法が共有されず、教育手法や人材育成手法の改善や体系化が進まないという問題点がありました。
そこで、教育実績の定量的評価の確立、人材育成・教育手法の公開による質の改善プロセスの実現を目指して、ロボット教育、人材育成分野の論文を募集します。将来のロボット研究者やロボット技術のユーザでもあるRTSP人材の育成、ロボット教育による社会貢献を目指した論文を開採したいと思います。
人材育成分野では、下記、全ての内容が十分に含まれているかで査読を行います。
1. 下記の内容が十分に記述、説明されているか、データは、定量的な評価（数値）だけではなく、定性的・主観的評価（アンケート、聞き取り調査、教育者の視点等）も含む。
2. 問題提起、仮説：教育する学習内容や教育の対象、何をどこまで獲得させたいか
3. 提案：具体的な実施手順や開発した内容の説明、論点の指摘
4. 学習過程、データ：どのような学習活動が観察されたか、そこで想定される学習過程、提案内容を支持する事実の提示
5. 考察：実践した結果から得られた知見、結果の考察、社会的意義の説明
6. 論文の包含内容に、ロボット教育、ロボットによる人材育成としての妥当性があるか。

社会分野
次のイノベーションを引き起こす核となるであろうロボットの社会普及を目指したロボットシステムに関する研究論文を採択することによって、ロボット分野の発展とロボット学の社会貢献を実現したい。そこで、社会分野では、ロボットと社会の関わりの中で、人やロボット間の相互作用や認識、ロボットの社会的振る舞い、非言語的行動等の知能情報処理や人工知能分野の新しい概念や理論、アルゴリズム、および、その実装といった論文を募集したい。単純のハードウェアに偏った手法や概念ではなく、ロボットと社会の関わりを意識した研究論文を念頭に置いて、単なるハードウェアの要素技術の開発ではない実際に社会に応用可能なシステムとしての独創性、先進性を積極的に評価する。また、社会学、心理学、医学等の工学以外の分野との学際的、横断的、また、構成論的な研究に関する論文も積極的に受け入れていきたい。

社会分野では、以下に述べる基準で査読を行う。
1. 研究対象となるロボットと社会の関わりが十分に考察されているか。
2. 提案する手法、技術、概念にロボット学の社会実装、ロボット学の発展に寄与する十分な社会的価値が含まれているか。
3. 社会的価値を示す実験結果が得られでおり、その意味が述べられているか。実験結果には、定量的な評価だけでなく、定性的・主観的評価も含む。
4. 他手法との比較や著者が指摘した仮説・仮説との比較を行い、著者の主張する成果の正当性が論理性に考察されているか。ただし、他手法との比較は過度には求めない。
5. 社会的課題の解決を目指した場合、そもそも問題の本質がどこにあるのかが不明瞭な場合も多い。そこで、実社会の中で実装と評価を繰り返し技術開発とニーズの発見をコンペレントに進める研究も積極的に評価する。
6. 倫理的な配慮が十分になされているか。
(4) 実証実験分野

ロボット技術を実社会に導入するためには、実証実験が必要不可欠であり、実証実験により得られた Lessons Learned のロボティクスに対する貢献は、非常に大きい。また、実社会に実装されたロボット技術の実運用に関する報告も、今後のロボティクスを発展させる上で、高い価値があると考えられる。しかしながら、これまで、「学術的新規性が小さい」といった理由から、ロボットの実証実験や実運用に関する論文は、あまり掲載されてこなかった。そこで、日本ロボット学会論文誌では、ロボットの実証実験や実運用に関する論文投稿を奨励するため、実証実験分野の論文について以下に示す査読基準を設定し、実証実験や実運用に関する論文の掲載を積極的に進める。これにより、実証実験結果や運用報告ならびに、Lessons Learned を広く共有することで、ロボティクスの発展に繋げたい。

1. 手法の新規性は問わない。実証実験または実運用に関する、背景（社会的課題や実運用におけるハードルの要因）、目的、条件、環境、方法、結果が適足無く記述されていること。なお、実験や実運用の過程で生じた障害とその克服についても、記述があると良い。

2. 実環境下での有用性を評価できる結果を入れること（シミュレーションのみの論文や、コントロールされた研究室環境内で実施した実験に関する論文、「作りました。動きました。」だけの論文は、実証実験分野には該当しない）。

3. 実証実験については、できる限り、他手法との比較がなされていること。類似環境における実験がすでに既報としてあれば、それらとの比較でも良い。また、実運用の報告については、その有効性と発展性が判断できただけの、十分なデータが掲載されていること。

4. 実証実験または実運用により得られた Lessons Learned が記述されていること。価値のある Lessons Learned が得られていれば実験の成否は問わない。
カレンダー

(2018年5月〜2019年6月)

<table>
<thead>
<tr>
<th>開催日</th>
<th>行事</th>
<th>開催地</th>
<th>申込締切日</th>
<th>会誌掲載号</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/20~5/24</td>
<td>The 2018 International Power Electronics Conference (ECCE Asia) 2018年パワーリークトラクション国際会議</td>
<td>新 潟</td>
<td>35巻8号・18</td>
<td></td>
</tr>
<tr>
<td>5/22~5/25</td>
<td>第54回真空技術基礎講習会</td>
<td>大 阪</td>
<td>36巻3号・18</td>
<td></td>
</tr>
<tr>
<td>5/23~5/25</td>
<td>平成30年春季フルードパワーシステム講演会</td>
<td>東 京</td>
<td>36巻2号・16</td>
<td></td>
</tr>
<tr>
<td>6/1</td>
<td>日本IFTomM会議シンポジウム</td>
<td>東 京</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>6/2~6/5</td>
<td>ロボティクス・メカトロニクス講演会 2018</td>
<td>福 岡</td>
<td>35巻10号・16</td>
<td></td>
</tr>
<tr>
<td>6/6~6/8</td>
<td>第23回計算工学講演会</td>
<td>愛 知</td>
<td>36巻3号・18</td>
<td></td>
</tr>
<tr>
<td>6/8</td>
<td>第394回講習会「基礎講座 設計の現状と未来 —教育から現場へ—」</td>
<td>東 京</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>6/9</td>
<td>第20回リーダーを目指す技術者倫理セミナー 一品質の逸脱はなぜ防げないのでか：データ改ざん・ねつ造のパターンを知る—</td>
<td>東 京</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>6/10</td>
<td>NHK 学生ロボコン 2018 〜 ABU アジアジア・太平洋ロボコン代表選考会〜</td>
<td>東 京</td>
<td>36巻4号・28</td>
<td></td>
</tr>
<tr>
<td>6/13~6/15</td>
<td>第24回画像センシングシンポジウム (SSII2018)</td>
<td>神 奈 川</td>
<td>36巻2号・16</td>
<td></td>
</tr>
<tr>
<td>6/16~6/17</td>
<td>知能ロボットコンテスト・フェスティバル 2018</td>
<td>宮 城</td>
<td>36巻3号・18</td>
<td></td>
</tr>
<tr>
<td>7/4~7/6</td>
<td>安全工学シンポジウム 2018</td>
<td>東 京</td>
<td>36巻1号・14</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>No.18-32講習会 マルチボディシステム運動学の基礎</td>
<td>東 京</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>7/5・7/6</td>
<td>3次元画像コンファレンス 2018</td>
<td>北 海 道</td>
<td>36巻3号・18</td>
<td></td>
</tr>
<tr>
<td>7/6</td>
<td>No.18-33講習会 マルチボディシステム動力学の基礎</td>
<td>東 京</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>7/16~7/18</td>
<td>フレキシブル・オートメーション国際シンポジウム 2018 (ISFA2018)</td>
<td>石 川</td>
<td>35巻8号・18</td>
<td></td>
</tr>
<tr>
<td>7/29~7/31</td>
<td>ICINCO 2018 (15th International Conference Informatics Control, Automation and Robotics)</td>
<td>Portugal</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>8/28~8/30</td>
<td>平成30年電気学会産業応用部門大会</td>
<td>神 奈 川</td>
<td>35巻10号・16</td>
<td></td>
</tr>
<tr>
<td>8/28~8/31</td>
<td>Dynamics and Design Conference 2018</td>
<td>東 京</td>
<td>36巻2号・16</td>
<td></td>
</tr>
<tr>
<td>8/29~8/31</td>
<td>平成30年度工学教育研究講演会</td>
<td>愛 知</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>9/3~9/5</td>
<td>第34回ファジーシステムシンポジウム（FSS2018）</td>
<td>愛 知</td>
<td>36巻4号・27</td>
<td></td>
</tr>
<tr>
<td>9/10~9/12</td>
<td>2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics (第12回仏メカトロニクス国際会議・第10回ヨーロッパアジアメカトロニクス国際会議)</td>
<td>三 重</td>
<td>35巻4号・18</td>
<td></td>
</tr>
<tr>
<td>9/17~9/20</td>
<td>The 8th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics 2018 (IEEE ICDL-Epirob2018)</td>
<td>東 京</td>
<td>35巻7号・37</td>
<td></td>
</tr>
<tr>
<td>9/26~9/28</td>
<td>センサエキスポジャパン2018</td>
<td>東 京</td>
<td>36巻2号・16</td>
<td></td>
</tr>
<tr>
<td>10/7~10/10</td>
<td>2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC2018)</td>
<td>宮 崎</td>
<td>34巻9号・32</td>
<td></td>
</tr>
<tr>
<td>10/7~11/25</td>
<td>AIデア対決・全国高等専門学校ロボットコンテスト2018</td>
<td>全 国</td>
<td>36巻4号・28</td>
<td></td>
</tr>
<tr>
<td>10/17~10/24</td>
<td>World Robot Summit 2018（ブレ大会）</td>
<td>東 京</td>
<td>35巻8号・18</td>
<td></td>
</tr>
<tr>
<td>11/1~11/2</td>
<td>第22回日本医療経営コンサルタント学会東京大会</td>
<td>東 京</td>
<td>36巻3号・18</td>
<td></td>
</tr>
<tr>
<td>11/10~11/11</td>
<td>第39回バイオメカニズム学術講演会（SOBIM2018 in Tsukuba）</td>
<td>茨 城</td>
<td>36巻3号・18</td>
<td></td>
</tr>
<tr>
<td>11/28~12/1</td>
<td>第16回国際航法学会世界大会（IAIN2018）</td>
<td>千 葉</td>
<td>36巻2号・16</td>
<td></td>
</tr>
<tr>
<td>12/4~11/7</td>
<td>SIGGRAPH Asia 2018</td>
<td>東 京</td>
<td>36巻1号・14</td>
<td></td>
</tr>
<tr>
<td>12/5~12/8</td>
<td>Joint 9th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems (SCIS & ISIS 2018)</td>
<td>富 山</td>
<td>35巻7号・37</td>
<td></td>
</tr>
<tr>
<td>開催日</td>
<td>行事</td>
<td>開催地</td>
<td>申込締切日</td>
<td>会誌掲載号</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>12/6・12/7</td>
<td>ViEW2018 ビジョン技術の実利用ワークショップ</td>
<td>神奈川</td>
<td></td>
<td>36巻4号・27</td>
</tr>
<tr>
<td>2019 1/23 ～1/25</td>
<td>第24回人工生命とロボットに関する国際シンポジウム（AROB23rd2019）</td>
<td>大分</td>
<td></td>
<td>36巻4号・27</td>
</tr>
<tr>
<td>6/15 ～6/21</td>
<td>第32回宇宙技術および科学の国際シンポジウム</td>
<td>福井</td>
<td></td>
<td>36巻2号・16</td>
</tr>
</tbody>
</table>

（詳細は表中の右欄に記載の会誌名号の会告・お知らせをご参照下さい。）
主催行事のお知らせ

第36回日本ロボット学会学術講演会

開催内

主催：一般社団法人 日本ロボット学会
協賛：計測自動制御学会、システム制御情報学会、情報処理学会、人工知能学会、精密工学会、電気学会、電子情報通信学会、日本感性工学会、日本械学会、日本シミュレーション学会、日本神経回路学会、日本人間工学会、日本パーティークティ学会、農業食料工学会、バイオメカニズム学会、日本知能情報ファジイ学会、日本フルードバーティシステム学会、国際ロボテクス協会、自動車技術会、ヒューマンインタフェース学会
後援：日本ロボット工業会、製造科学技術センター、マイクロマシンセンター、IEEE Robotics and Automation Society Japan Joint Chapter

会期：2018年9月5日（水）～7日（金）
※当初は9月8日（土）に中部大学名古屋キャンパス（名古屋市）にて、オープンフォーラムを実施予定でしたが、諸事情によりオープンフォーラムは上記会期中に講演会行事と同じ中部大学春日井キャンパス（春日井市）にて、開催することにいたします。

講演会趣旨：
第36回日本ロボット学会学術講演会（RSJ2018）は、2018年9月5日（水）～8日（土）に中部大学春日井キャンパス（愛知県春日井市）で開催されます。本講演会では、新たな社会基盤としてのロボット技術から、学術可能性を追求するロボットサイエンスに至るまで、幅広い分野の講演を募集いたします。企業、研究所、大学等からの幅広いご発表、ご参加をお待ちしています。
ホームページ：本講演会に関する最新情報を以下のホームページをご確認ください。
http://rsj2018.rsj-web.org/

講演会スケジュール概要：
2018年9月5日（水）一般講演、ポスターセッション（予定）、オープンフォーラム
2018年9月6日（木）一般講演、ポスターセッション（予定）、オープンフォーラム、特別講演、表彰式、懇親会
2018年9月7日（金）一般講演、ポスターセッション（予定）、オープンフォーラム
※口頭発表を主体とした学術講演会ですが、ロボティクスにおいては確かなメカニズムや制御アルゴリズム・応用に関する議論など、インタラクティブなディスカッションが期待できる内容が存在しています。口頭発表は必ずしも他者の意見を聞いてみたい、という速報的な研究成果を数多く存在しています。そのような成果に対し成果発表の機会を提供するため、ポスターセッションを試験的に導入してみることを計画しました。ポスターセッションの原稿等はダイジェスト予稿集、予稿CD-ROMには掲載されません。ON-lineダウンロードのみを考えています（準備中です）。投稿する側からは、口頭発表一般講演と比べて締め切りが1か月ほど遅くなるというメリットがあります。こちらにも奮ってご応募ください。
締め切り日:
オーガナイズドセッション申し込み締切 2018年5月9日(水)
講演申し込み締切 2018年7月5日(木)
論文原稿締切 2018年7月5日(木)
機器・カタログ展示、広告掲載申し込み締切 2018年7月13日(金)
ポスターセッション申し込み・原稿締め切り(予定) 2018年8月2日(木)
事前参加登録締切 2018年8月10日(金)
※※※オーガナイズドセッション申し込み締め切りを1か月延長しました。講演会ホームページに「オーガナイズドセッションの運用方針の明確化と申込み締切延期のお知らせ」を掲載していますのでご覧ください。ポスターセッションについては※※※をご覧ください。

お問い合わせ:
講演会全般
RSJ2018実行委員会 E-mail: rsj2018secretariat@isc.chubu.ac.jp
実行委員長 大日方 五郎 (中部大学)
論文・プログラム
プログラム委員会 E-mail: rsj2018.pc@ml.riken.jp
プログラム委員長 下田 真吾 (理化学研究所)
Announcement of 24th Robotics Symposia

第24回ロボティクスシンポジア

開催案内

http://www.robotics-symposia.org/24th/

主催：
日本ロボット学会（幹事会）
日本機械学会（ロボティクス・メカトロニクス部門）
計測自動制御学会（システムインテグレーション部門）

協賛：
IEEE Robotics and Automation Society Japan Joint Chapter (RAS-JJC)

第24回ロボティクスシンポジアは、2019年3月14日〜15日に富山県黒部市宇奈月温泉の宇奈月ホテルで開催します。

本シンポジアはロボット学に携わる研究者同士の、学会の垣根を超えた広く深い交流と議論を一番の目的とします。そのため、並列セッション数を制限するとともに、各講演の発表時間を30分とレベルの高い議論に十分な時間を確保します。さらに1泊2日の泊まり込みを基本として、参加者により深い議論ができる場をセッション外でも提供いたします。

例年と同様に、投稿論文を厳正に査読することで質の高い議論を保証するとともに、シンポジアでは全ての採択論文に対し、主催学会論文誌特集号などへの投稿を推薦いたします。予稿集への掲載原稿は、近年のシンポジアと同様にフルペーパー形態だけでなく、エクステンデッドアブストラクト形態（2〜4ページ）も選択していただけます。そのため、講演後に本シンポジアでの質の高い議論を活かした原稿校正を行い、各学会論文誌へご投稿いただけます。なお、より負担なく学会論文誌への投稿とシンポジアの講演を両立できる仕組みを用意しております。対象となる論文誌については裏面をご参照ください。

本シンポジアが、ロボット学関連研究者の研究を効果的に推進できる場となるよう準備を進めています。

きときとな 海の幸 山の幸 に恵まれた富山の地域で、多数のご投稿とご参加をお待ちしております。

期 日 ：2019年3月14日（水）〜15日（金）
会 場 ：宇奈月ホテル（https://www.unazuki-suginoi.jp/）

富山県黒部市宇奈月温泉352番地

参加について：現地宿泊を原則とします（深夜に及ぶ行事を予定しております）。
表彰について：優秀な発表論文については懸賞会にて表彰を行います。
また主催3学会の賞選考委員会への推薦を行います。
今後の予定（※）：
2018年09月21日（金）講演申し込み〆切
2018年10月19日（金）論文投稿提出〆切
2018年12月10日（月）査読結果通知
2019年01月11日（金）最終原稿提出〆切
2019年02月01日（金）参加登録〆切
※ 日程は変更の可能性あり

実行委員長 小柳健一（富山県立大学）
プログラム委員長 渡辺哲陽（金沢大学）
問合せ先 robosym2019@eng.u-toyama.ac.jp

黑部宇奈月温泉のご紹介
富山県東部に位置する宇奈月温泉、大正時代の電源開発と共に温泉地として歴史の幕を開けました。当館は日本一の透明度を誇り、県屈指の温泉郷として愛されている。また名水の里としても知られ、周辺の豊かな自然と地元大衆の杜を使って『宇奈月ビール』は、富山を代表する地域ビールのひとつです。
学会論文誌への投稿について

本シンポジアへ投稿いただいた原稿について、表に記載された論文誌への同時投稿オプションを予定しております。積極的なご投稿をお願い申し上げます。

<table>
<thead>
<tr>
<th>RSJ, SICE, JSME の三学会の和文&英文論文誌</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本ロボット学会誌</td>
</tr>
<tr>
<td>Advanced Robotics</td>
</tr>
<tr>
<td>計測自動制御学会論文集</td>
</tr>
<tr>
<td>SICE Journal of Control, Measurement, and System Integration</td>
</tr>
<tr>
<td>日本機械学会論文集</td>
</tr>
<tr>
<td>ROBOMECH Journal</td>
</tr>
</tbody>
</table>

* 投稿の流れや日程などの詳細は後日 HP にてご確認ください。
General Information

The Robotics Society of Japan (RSJ), to provide opportunities to learn more about industrial and service robots to high school students who may not normally come into contact with them, held the Robot High School (Industrial Robots Workshop for High School Students) at the Tokyo Big Site, the site of the International Robot Exhibition, in 2009 and in 2011. Moreover, the RSJ, to provide opportunities to join international students, held the International Robotics Forum for High School Students (IRH) in 2013, 2015, and 2017. You can refer to the detail of them at the official site of IRH (http://www.rsj.or.jp/en/education/irh/). In October 2018, Japan Robot Week (JRW) 2018 and World Robot Summit (WRS) 2018 (http://worldrobotsummit.org/en/) will be held in same time, and so many advanced robotics trials will be demonstrated in these events. The RSJ is going to hold the International Robotics Forum for High School Students 2018 (IRH 2018) that will collaborate with these events.

The event will take place over two days. We will prepare a challenge for all the participants. We will send you themes of robot study. Your students will study about them in advance, and on Day One, and visit the iREX 2018 and WRS 2018 to investigate real robots. In the morning of Day Two, your students will present their study and investigation result. In JRW 2018 and WRS 2018, you and your students will be able to fun and excitement of advanced robot technologies. In the afternoon of Day Two, as the final event, awards will be given by the RSJ to groups that have given outstanding presentations.

Your student's presentation on Day Two will be simultaneously interpreted into English and Japanese alternatively. The conference will offer an ideal opportunity for senior high school students from the around the world to communicate with each other through robots. Therefore, we look forward to your active participation.

We hope that many future robot researchers, engineers and entrepreneurs will be born today.
Overview

- Sponsored by: The Robotics Society of Japan
- Cosponsored by: Japan Robot Association, and Nikkan Kogyo Shimbun, Ltd.
- Date and time: Friday October 19, 2018, 9:30-17:00 and Saturday October 20, 2018, 9:00-16:00
- Venue: At the site of JRW 2018 and WRS 2018, Tokyo Big Sight, Tokyo, Japan
- Participation fee: None. We will provide the lunches during the event. Travel expenses to and from Japan and within Japan, and other costs including accommodations while in Japan will be borne by the participant.
- Schedule:
 - **Friday October 19**
 - 9:30 - 10:00 / Orientation
 - 10:00 - 17:00 / Robot investigation: Visit and investigate JRW 2018 and WRS 2018
 - (Theme of the investigation will give to the each school in advance)
 - **Saturday October 20**
 - 10:00-19:00 / You will be able to use the meeting room for your preparation of the presentation on Day Two.

Participation eligibility and application

- Eligibility: Senior High School Students and their teachers
 - Students will not be allowed to participate on their own but **must be accompanied by a teacher**
 - Maximum number of participants of each school is 20 that includes the number of the teacher.

- **Maximum number of participants: 200**
- **Application deadline:**
 - Application will be on a first-come-first-serve basis and will close as soon as applicants reach the maximum number. Information about present participant status is shown at the IRH 2018 website (http://www.rsj.or.jp/en/education/irh2018). Moreover, if you need detail of the status, please ask to a following address by e-mail. (secretary@rsj.or.jp)

- Applications and inquiries should be addressed to:
 - The Robotics Society of Japan
 - Add.: 2nd Fl. Blue Bldg., 2-19-7 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
 - Tel: +81-3-3812-7594, Fax: +81-3-3812-4628
 - Email: secretary@rsj.or.jp

- **Application method:**
 - Application should be made through the accompanying teacher by the following procedures.

- Please apply via e-mail titled “IRH 2018 Application,” providing the following necessary information and a list of applicants, addressed to the above e-mail address.
 - Upon receipt of your application, the secretariat of the RSJ will send you a confirmation e-mail.

- **Necessary information:** Please provide contact information of the accompanying teacher.
 - Name of school/ Name and Title of the teacher/ Contact address/ TEL/ FAX/ E-mail/

- **List of participants:** Please be sure to attach the list to the application e-mail. Please fill out the names of the accompanying teacher and the students in the “List of participants of IRH 2018” (You can download this file at “http://www.rsj.or.jp/en/education/irh2018.”), and send it together with the above necessary information.

- **Notice:**
 - Please send following items to secretary@rsj.or.jp by Friday, August 31, 2018.
 - Details will be shown in the IRH website (http://www.rsj.or.jp/en/education/irh2018).

 1) Selected theme for your presentation of Day Two: Please select your theme from three themes.

 2) Introduction of our school; All schools are required to present own school introduction data for information sharing among participants. We will deliver the data to all participants.
IRH2018
インターナショナルロボットハイスクール2018
東京ビッグサイト、2018年10月19日（金）-20日（土）

ご案内

行事は2日間で、参加される皆さんには予め提示させて頂く調査課題に基づきロボットについて事前学習して頂き、初日に、JRW2018およびWRS2018に出展されている実際のロボットを調査して頂きます。その結果を合せてまとめ頂き、二日目の午前に調査結果の発表をして頂きます。今回の展示は、JRW2018およびWRS2018の同時開催ということで、ロボット最先端技術をまとめて体験することができるでしょう。さらに、午後には本催しの締めとして、午前の発表会で、優秀な発表を行ったグループに対して日本ロボット学会より表彰をさせて頂き、全体記念写真撮影などをさせて頂きます。

前回同様、皆さんの研究発表では日英同時通訳を行います。世界的に高く評価されている请求には好意を表し、皆さんの研究発表に期待しています。

参加された皆さんの中から、将来、多くのロボット研究者・技術者・起業家が生まれることを期待しています。
概要

● 主催：一般社団法人 日本ロボット学会
● 共催：一般社団法人 日本ロボット工業会、日刊工業新聞社
● 協賛（募集中）：ロボコンマガジン（株式会社オーム社）、トヨタ自動車株式会社、株式会社安川電機、三菱電機株式会社

開催日時：2018年10月19日（金）9:30-17:00、20日（土）9:00-16:00
場所：東京ビッグサイト、会議棟及びJR2018、WR2018会場内
参加費：無料（昼食を含めて）用意します。旅費・宿泊費は自己負担とさせて頂きます
スケジュール
10月19日（金）
9:30-10:00 オリエンテーション
10:00 - 17:00 調査見学：JR2018、WR2018会場内
（予め提示させて頂きく課題に従い出展されているロボットの調査をして頂きます）
10:00 – 19:00 発表準備のために会議室を利用できます
10月20日（土）
午前 調査発表会（初日の調査結果を発表して頂きます）
午後 表彰式、記念撮影、閉会
実施内容詳細：IRH2018オフィシャルサイト（http://www.rsj.or.jp/education/irh2018）で掲載しています

参加募集及び申し込み等

● 対象者：各種高等学校生、高等学校専門学校生、及び教職員の皆様
学生のみの参加はお受けできません。必ず教職員のご引率をお願い致します。なお、1校当たりの御参加は生徒、教職員合わせて最大20名までとさせて頂きます。

● 定員：200名（先着順で、定員になり次第締め切られていただきます。）

● 申し込み締切：定員になり次第締め切させて頂きます。なお、申し込み状況については、IRH2018オフィシャルサイト（http://www.rsj.or.jp/education/irh2018）に掲示させて頂きますのでご参照ください。また、詳細をお知りになりたい方は下記宛てメールでお問い合わせください。secretary@rsj.or.jp

● 申込／問合先：
一般社団法人 日本ロボット学会 インターナショナルロボットハイスクール係
〒113-0033 東京都文京区本郷2-19-7 ブルービルディング2階
TEL：03(3812)7594　FAX：03(3812)4628
E-mail：secretary@rsj.or.jp

● 申し込み方法：引率教職員の方より下記の手順でお申し込みください。

■ タイトルを「インターナショナルロボットハイスクール2018申込」とし、下記の必要事項及び参加者一覧（文末参照）を記載して、上記E-mail宛にお申し込みください。折り返し、事務局から確認の連絡を差し上げます。
E-mailが使用できない場合、上記申込／問合先記載の連絡先宛てに、郵便またはファクシミリでお申し込みください。

■ 必要事項：引率者の方の下記の連絡先を情報をお知らせください。
氏名（フリガナ）／役職／勤務先／学校名／連絡先住所：〒から記入をお願い致します／TEL／FAX／E-mail

■ 参加者一覧：必ずE-mailに添付して送付お願いします。
当学会サイト（http://www.rsj.or.jp/education/irh2018）より“インターナショナルロボットハイスクール2018参加申し込み者一覧”をダウンロードし、引率者の方と参加される学生の皆様につきご記載の上、上記必要事項と共に送付してください。

■ 事前提出物：
下記のものを、secretary@rsj.or.jp宛に8月31日（金）までに送付してください。詳細については、当学会サイト（http://www.rsj.or.jp/education/irh2018）に掲示しますのでご参照ください。
1）2日目の調査発表の課題：3つの課題の内から1つを選ぶしてください
2）学校紹介：参加各校間の交流と情報共有のために、自校の紹介記事を提出して頂きます。それらを集積し、参加者の皆さんに配布させて頂きます。
セミナーのご案内

ロボットのための画像処理技術

日時：2018年5月31日（木）10:00～17:30（開場9:30）
会場：東京大学 本郷キャンパス 武田先端知能ビル 5F 武田ホール（東京都文京区本郷7-3-1）
アクセス：http://www.u-tokyo.ac.jp/campusmap/cam01_04_16_i.html
http://www.vdec.u-tokyo.ac.jp/Guide/access.html

口上：ロボットが実世界で活動するためには、センサより
獲得した情報に基づいて外を認識する画像処理
技術が重要です。近年では、センサや計算機が進化
するに従って画像処理技術が発展し、ロボットに高
度な認識技術を搭載することが可能となってきました。
本セミナーではロボットに必要不可欠な画像処理
技術として、画像及び3次元点群のレジストレーション
、自律移動ロボットにおける自己位置推定
やSLAM（統合された周辺を理解する技術）から、3次元
物体認識や深層学習による画像認識といった対象
を理解する技術、さらに近年の深層学習を支えている
ハードウェアについて、講師の方々からわかりやすく
ご紹介いたします。

オーガナイザー：山内 悠（東京大学）

WEBサイト：http://www.rsj.or.jp/seminar

講演内容:
10:00-10:10 10:10-11:40 第1話 SLAM
11:40-12:00 12:00-13:00 第2話 3次元レジストレーション

SLAM（Simultaneous Localization and Mapping）は、
移動ロボットの基盤技術である。ロボット自身が自己位置
推定や地図構築を行い、自律走行を実現する土台となる。
ロボット掃除機や自動運転車などでも、実用化が進みつつあ
る。SLAM技術は多岐にわたり、その理解には全体像
の把握が重要である。自分で実装する場合も、オープンソ
ースソフトウェア（OSS）を利用して場合、手法の原理
と位置付けの理解が欠かせない。全体像を把握すれば、改
良や発展の方向性も見極められる。本講演では、SLAMの全
体像をペイズフィルタ系、スキャンマッッチング系、グラフ
ベースSLAM系に整理して説明する。特定の手法に偏ら
ずに、各手法について同様に述べ、原理と位置付けを明ら
かにする。また、初学者にも理解しやすいよう、概念を視
覚的に把握できるように説明する。

11:40-12:40 休憩（昼食）

12:40-13:40 第2話 3次元レジストレーション

3次元点群に対するレジストレーション（位置合わせ）
手方は解説する。まずレジストレーションとは何か
を、2次元のレジストレーションの例から始めて、3次元レ
ジストレーションの基礎を説明する。そして代表的な手法
ICP（Iterative Closest Point）と、その拡張であるSoftassign,
EM-ICPについて説明する。

13:40-13:50 休憩

13:50-14:50 第3話 深層学習による画像認識技術

特化型人工知能を実現する深層学習は、画像認識・音声
認識・自然言語の各分野において従来のアプローチと比べ
認識性能を大幅に向上し、大変注目されている。本講演で
は、画像認識における深層学習の基礎を詳しく説明し、最
新動向について紹介する。また、Amazon Robotics Challenge
での深層学習の利用について紹介し、今後の課題について
述べる。

14:50-15:00 休憩

15:00-16:00 第4話 3次元物体認識技術

産業技術総合研究所 金崎 朝子

日本ロボット学会誌 36巻 4号 2018年5月
近年、3次元センシング技術と機械学習の発展により、3次元データから様々な物体を認識する技術が飛躍的に進化してきている。深層学習を用いた手法が主流であるが、その中でも、ポケルベール、点群ベース、多視点画像ベース等の様々なアプローチが存在する。本講演では、これらの最先端研究について総合的な紹介を行うとともに、3次元データ処理の基礎について触れる。

16:00-16:10 休憩

16:10-17:10 第5話 エヌピディア合同会社 梅本 将範

RSJ 第113回 ロボット工学セミナー

ロボットの作り方〜移動ロボットの制御とROSによる動作計画実習〜

日 時：2018年6月16日（土）10:00～17日（日）17:00 の2日間 [※両日とも参加できるグループのみ申込可能です。]
会 場：北陸電機株式会社 豊中事業所5階（大阪府豊中市神果町1番37号）
アクセス：最寄り駅「三田駅」（阪急宝塚線）徒歩10分
参考URL：https://www.hokuyo-aut.co.jp/company/sub01.html?p_toyonaka

定員：20グループ（1〜3名のグループでご参加ください）
［定員に達次第、申込を締め切ります。］

参加費（税込）：
- 当学会及び協賛学会の正会員（個人）／13,000円、会費外（一般）／19,500円
- 当学会及び協賛学会の学生会員（個人）／4,500円、会費外（学生）／6,500円
- 当学会賛助会員 招待券ご利用／無料、優待券ご利用／4,500円、受講サービス券なし／19,500円

特別優待券ご利用の場合 学生・RSJ会員非会員問わず／無料、学生以外／3,000円

実習キット購入費（税込）：ロボット購入／88,500円
- 本セミナーに参加するには1グループにつき最低1台ロボットが必要です。ただし以前の第84回、第91回、第99回セミナーに参加された方は、ご購入済みロボットをお持ちいただければ、今回新たなロボットの購入は必要ございません。また、「今回購入のロボット＋「以前のセミナーのロボット」の2台のロボットで参加頂くことも可能です。セミナー終了後、ロボットはお持ち帰りいただけます。

注意事項：ソフトウェア開発用のノートPC、ロボット電源用の単三乾電池8個、USBケーブルUSB2.0AコネクタおよびUSBマスコンネクタ2つをご持参下さい。ノートPCには事前にUbuntu (16.04) とROS (Kinetic Kame) のインストールをお願いいたします。参加者の皆様には、事前準備等記載した参加者用WEBサイトの情報をメールでお送りしておりますのでお見逃しなく。なお、本セミナーはC++言語の基本的なプログラミングスキルとLinuxについての基礎的な知識を習得している方を対象としています。

口上：
本セミナーでは、移動ロボットの研究を始めようとしている学生、研究者、企業の方々を対象に、移動ロボットプラットフォームの制作、および2次元・3次元の距離センサを利用したロボットの動作プログラム作成を体験して頂きます。プログラムにはROS (Robot Operating System) を用います。本セミナーでの実習は、様々な車輪移動型ロボットの制御やセンサ情報処理システムの構築への応用が可能となっています。

オーガナイザー：
阪神 茂（Doog）
宮脇 健三郎（大阪工業大学）

日程：
- 1日目
 10:00-12:00 実習1-1 ロボット（図1）の組み立てと動作テスト
 12:00-13:00 昼休み

- 2日目
 13:00-14:00 講義「モータ制御・ロボット動作制御の理論」講師：渡辺教志 (SEQUENCE㈱)
 14:00-15:00 実習1-2 ROSプログラミングの基本
 15:00-16:00 実習1-3 ROSを用いた点群取得
 16:00-17:00 実習1-4 ROSの便利機能

10:00-11:00 講義「ROSを用いた移動ロボットのシステム構築」講師：渡辺教志 (SEQUENCE㈱)
11:00-12:00 実習2-1 ROS Navigationパッケージの利用
12:30-13:00 昼休み
13:00-14:00 実習2-2 3次元点群の処理
14:00-16:30 実習2-3 点群処理とロボットナビゲーションの統合
16:30-17:00 講座と質疑

本セミナーの到達目標は、参加者が2次元・3次元の距離センサ（図2）から得られる点群情報の処理と自立移動ロボット制御のためのROSパッケージを自ら作成できるようになることです。そのため、1日目は実習で使用するロ
ポットを組み立てた後、LinuxとROSの基本を学び、ROSにおける自律移動ロボットの制御方法や距離センサの扱い方を学びます。2日目はROS Navigationパッケージによる移動ロボットのさらに複雑なシステムの構築方法、および3次元点群処理の手法を学びます。1日目と2日目の講義では、実習に役立つ基礎理論や応用事例について理解を深めます。

実習キット：
本セミナーでは独自2輪駆動の移動ロボットと距離センサを組み合わせて実習用システムを構築します。距離センサは貸し出しいたします。また、希望者は自宅の使用状況を交換する形で持ち帰り可能となります。2次元距離センサURG-04LX-UG01を特別価格で販売することに決まりました。なお、センサ台数の制限により、3次元距離センサはグループごとに異なるセンサが割り当てられることもあります。

図1: 移動ロボット iCart-edu

(a) URG-04LX-UG01 (b) YVT-35LX (c) Xtion PRO Live

図2: 貸出予定の2次元・3次元距離センサ

RSJ 第114回 ロボット工学セミナー
サステナブルな空の産業発展をめざして～ドローンの運用とビジネス応用～

日時：2018年6月22日（金）10:20〜16:30（開場9:50）
会場：芝浦工業大学豊洲キャンパス交流棟SF501教室（東京都中央区豊洲3-7-5）
アクセス：http://www.shibaura-it.ac.jp/educational_foundation/facility/toyosu-campus.html
http://www.shibaura-it.ac.jp/access/toyosu.html

最寄り駅：豊洲駅（京成線）
または「越中島駅」（京葉線）2番出口徒歩15分

定員：会場150名／ネット配信10名（子どもも定員になり次第締め切ります）

参加費（税込）：※ お支払いの際、別途システム手数料216円を頂戴致します。
当学会及び協賛会の正会員（個人）8,500円、会員外（一般）13,000円
当学会及び協賛会の学生会員（個人）3,000円、会員外（学生）4,500円
当学会賛助会員招待券ご利用／無料、優待券ご利用／3,000円、差替サービス券なし／13,000円
特別優待券使用の場合：学生（RSJ会員非会員含む）／無料、学生以外／3,000円

ネット配信参加（RSJ初回会員のみ申込可能）：申込者のみ視聴／4,500円、申込者以外／8,000円

口上：楽天やAmazonのドローン配送料金の挑戦に代表されるように、飛行ロボットの産業応用が注目されております。一方で、一般ユーザーや比較的気軽にドローンを購入し、空撮やイラストオフ Gizモニターを活用することができるようになってきていることから、今後のドローン分野の持続的産業発展のための運用マネージメントが重要となってきています。本セミナーでは、運用マネジメントからビジネス応用までの課題と展望のご紹介がございます。

WEBサイト：http://www.shibaura-it.ac.jp/RSJ-seminar

日時：2018年6月22日（金）10:20〜16:30

第114回 ロボット工学セミナー
サステナブルな空の産業発展をめざして～ドローンの運用とビジネス応用～

日程

10:30〜11:20 第1話 ドローンの運用管理システム
宇宙航空研究開発機構 原田 賢哉

小型無人機（ドローン）の利活用を通じて、産業、経済、社会に変革をもたらすことが期待されています。しかし、現在の飛行ルールは操縦者（またはその補助者）が目視によってドローンやその周辺を監視し、安全を確保することを基本としており、例えば物流のように長距離輸送の飛行を伴う運用は難しい状況にあります。そこで、操縦者の目視に代わって周囲の情報を収集・活用し、目視外を飛行する多数のドローンの安全かつ効率的な運用を支援するシステムとして、UTM（Unmanned aircraft systems Traffic Management）運用管理システムの構築が重要とされています。本講演では、運用管理システムの研究開発を中心に、「空の産業革命」の実現に向けた産業・国内・海外の取り組みを紹介します。
11:20-11:30 休憩

11:30-12:20 第2話 ロボット用電波周波数「無人移動体画像伝送システム」と電波運用調整
工学院大学 羽田 博史

2016年8月に利用可能となった「無人移動体画像伝送システム」は、ドローンやその他の無人機のための初の24周波数である。これまで既存の無線LANやBluetooth、ZigBeeと比べ、より遠方まで届き、混信ににくい、運営が容易な等の利点があり、今後の商用産業発展に大きく寄与する可能性を持っている一方、免許や運用調整が必要など、利用上注意を要する点もあります。本講演ではこの周波数の概要、得失、利用方法、利用可能な無線機、現状について説明し、また我々の研究グループで開発した無線機等を用いた構造設計、火山調査等の実験結果について紹介します。

12:20-13:30 休憩（昼食）

13:30-14:20 第3話 オープンソースを使った産業用ドローンの開発
ドローンワークス株式会社 今村 博宣

国内においてドローンの開発と言うと「バーツを集めて機体を作り」るという現状であり、とても産業用途に使われるレベルに達していません。本講演では、プラントコンローラ、ESCなどオープンソースを用いてドローン開発する方法について講義を行います。また、現在JASAMCPCで進めているオープンソースによるドローン開発の標準化、ドローン使用する無線通信の検討内容など、産業用ドローンに必要とされる技術的背景についての現在報告などを行います。

14:20-14:30 休憩

14:30-15:20 第4話 ドローンビジネスと今後の展望について
サイクトレック株式会社 山根 敦

本講演では、弊社が開発するカーボンフレーム式ドローン シリーズ、カーボン製モノコック構造のYOROIシリーズの特徴と産業界での活用事例を紹介します。また、新たなドローンによる運用事例として、地上給電方式による長時間フライトの取り組みや大型ドローンによる自立飛行用の貨物運搬、海外での着陸場としてのドローンのタクシーなどをドローンビジネスの実例を紹介します。最後に、ドローンの運用課題と解決策として、プロトタイプの実用化を図り、カーボン製の製品化とリサイクルのための標準化などの取組みについて紹介します。

15:20-15:30 休憩

15:30-16:20 第5話 現場からみるドローン最新事例
テラドローン株式会社 竹崎 健二

ドローン技術の活用が進んでいる測量、点検等の分野を中心に、海外事例を含めた最新動向をお伝えします。ドローンとの組合せは、写真、レーザー、赤外線カメラ、ハイスペックプロトタイプ、超音波センサー・・・無数にありますが、実際に現場でどこまで活用が進んでいるのでしょうか。また、UTMといわれる、ドローン運行管理システムについても実証事例をご紹介します。

16:20-16:30 閉会挨拶

第115回 ロボット工学セミナー
構築技術の変革から考える5年、10年後先のロボティクスの未来

日時：2018年7月19日（木）10:30～16:35（開場10:00）
会場：東京大学 本館キャンパス 武田栄記念ビル5F 武田ホール（東京都文京区本郷7-3-1）
アクセス：http://www.u-tokyo.ac.jp/campusmap/cam01_04_16_i.html
http://www.vdec.u-tokyo.ac.jp/Guide/access.html
寄り勤務：「根津駅」（千代田線）徒歩5分、「東京駅」（南北線）徒歩10分、または「本郷三丁目駅」（丸ノ内線、新大宮線）徒歩15分、「弥生2丁目」（都営バス50（上野→,</p>
10:30-11:00 ＜開会挨拶・本セミナーの趣旨説明＞

11:00-11:50 第 1 話 ロボットはどの様に進化しデザインされるか？
オートデスク株式会社 塩澤 豊
https://www.autodesk.co.jp/

ロボットは進化した新しいモーダルではなく、生産性の工場では何年も前から活用されている。その多くは省力化のためで決める事項をロボットに効率的にさせるために、ハード、ソフトの両面で技術進化が進んで来た。最新では、画像解析や機械学習などにより状況を判断し仕事をこなすような技術で、これらの技術が、我々の家庭へも進出を始めている。また、クラウドやAIに代表されるテクノロジーの進化により、製品開発の方法が変化してきている。

ロボットのデザインにも影響を及ぼすはずである。ここでは、Autodesk社での取り組みや、弊社顧客の事例を紹介し、今後の様々なロボットが出現するのかを予想してみる。

11:50-13:00 休憩（昼食）

13:00-13:50 第 2 話 フレキシブルプロダクション方式による設計・製造の革命
エレファントック株式会社 滝間 健哉
https://www.elephantech.co.jp/

ソフトウェアが発展的に世界に広がった理由の一つは、その開発・デプロイメントのハードルの低さからくる、開発の多様性である。それを比べてロボットをはじめとするハードウェアの世界では、開発のハードルが高く、また一度作ってしまえば変更したとしても大きなコストがかかるから、世界全体で見た「試行錯誤の回数」が伸びていないというが、ソフトウェアのように多様な製品が生まれた理由の一つである。その問題に対し、エレファントックが展開しているFPC印刷技術と、それを用いたフレキシブルプロダクション方式で、それを用いてこれまで不可能だった製品開発を可能にした例などを紹介する。

13:50-14:00 休憩

14:00-14:50 第 3 話 3Dプリンターによるロボット作り
MagnaRecta,Inc. 加藤 大直
http://magnarecta.com/

ハッドウェアの開発を行う上で高速に試作構造を可能にする3Dプリンタは小型化と低価格化を経て今後ハードウェア開発の敷居を下げるに大きく貢献しているが、その一方で近年3Dプリンタの本格使用を遂げようとしている我々を取り巻く製造業の従事者は固有素材や単一の素材を繰り返し生産し、またそれらを組み合わせる方法の上で成り立っていることに、これまでで形作成として認知されていた3Dプリンタはソフトウェアと素材の多様化により、固形物の再現という単一の機能から、柔軟性、水溶性、熱可塑性等の多様な機能を有することが可能になった。既存生産技術の上で開発された物の類似性と非互換性に対してMagnaRectaは3Dプリンタでデジタルブリッジショナル機器を固形物を生産するための造形機器としてではなく、ソフトウェアクス、有機物の再現、機能の複合等を生産可能にするツールオブツールを紹介する。

14:50-15:00 休憩

15:00-15:50 第 4 話 生物を通して観察する形態と機能の関係性
東京大学 野下 浩司
https://koji.noshiha.net/

生物の「かたち」は共通する物理的制約と異なる生態環境の中で進化し、ゲノムにコードされた多様なかたちが発生するため、これらはそれぞれ進化する。生物は二つの対立する、強大な要素に沿って活動できる。例えば、バイオミティクスとして知られる分野で生物の構造を分析や行動を解析し、新たな材料や効率的な設計を実現している。近年の計測技術の発展は生物のかたちの定量的評価を加速し、工業デザインやロボット設計へのフィードバックを可能にするだろう。これでは、ある生物の制約の中で効率的な形態とは何かを採るバイオメカニクスの研究が自ずと進展し、自己修復機能としての形態形成に関する研究の例を紹介したい。

15:50-16:00 休憩

16:00-16:30 第 5 話 オープンプラットフォームが導く新たな物造りのエコシステム
東京大学 ソン ヨンア
www.opensoftmachines.com

材料の多様化と製造方法のオープン化に伴い、設計できる物の種類と自由度が格段に増えてきている。その可能性をより一層の人々に広げていくための情報網の構築が行われている。ソフトウェアのオープン化だけでなく、ハードウェアでもオープン化の流れが来ている。その中で見えたら物造りの可能性と広がりを紹介する。

16:30-16:35 休憩
お知らせ

JRSJ Vol. 36 No. 4 May, 2018

内容は予告なく変更される場合がございます。最新情報は学会 WEB ページにてご確認ください。

＜申込方法／問合せ先＞
2017年開催セミナーより参加申込および参加費のお支払い方法が変更となりました。詳細は右記 WEB ページをご確認ください（https://www.rsj.or.jp/seminar_info/pay/）。各セミナーの詳細を学会 HP（https://www.rsj.or.jp/seminar）からご確認の上、お申し込み下さい。お問合せ先：RSJ 事務局セミナーリンク TEL. 03-3812-7594 E-mail. seminar@rsj.or.jp

※ 賛助会員招待券／優待券および特別優待券（複数回受講特別優待制度）の詳細は下記 WEB ページをご参照ください。https://www.rsj.or.jp/seminar_info/ticket/

＜注意事項＞
1. 会場、講師、日時等は都合により変更になる可能性がございますのでご了承下さい。最新の情報は学会ロボット工学セミナー HP（https://www.rsj.or.jp/seminar）に掲載されます。
2. 警報発令時のセミナー開催中止判断については右記 WEB ページをご確認ください（https://www.rsj.or.jp/seminar_info/cancel/）。
3. 当日、参加者の理解を深めるためテキストを配布致します。このテキストは、原則、講演に使用されるスライド資料等を縮小コピーしたものですが、諸事情により修正・抜粋がされている場合がございます。ご了承下さい。また、テキストの後日販売は行いません。
4. 参加者のセミナー会場内での撮影・録音行為は禁止させていただきます。なお、撮影・録音を含む取材をご希望の場合は必ず事前に学会事務局までお問い合わせ下さい。
本会協賛行事

<table>
<thead>
<tr>
<th>会合名</th>
<th>主催</th>
<th>開催日・会場・その他</th>
<th>申込・問合せ先</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本IFToMM 会議シンポジウム</td>
<td></td>
<td>2018年6月6日（金）東京大学弥生キャンパス（農学部）</td>
<td>http://www.jc-iftoomm.org/japanese/index.html</td>
</tr>
<tr>
<td>日本IFToMM 会議</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第394回講習会「基礎講座 設計の現状と未来 —教育から現場へ—（公社）精密工学会</td>
<td></td>
<td>2018年6月8日（金）中央大学後楽園キャンパス2号館2階2215・2221室（〒112-8551文京区春日1-13-27）</td>
<td>公益社団法人精密工学会 〒102-0073 東京都千代田区九段北1-5-9 九段誠和ビル 2F TEL：03-5226-5191 FAX：03-5226-5192</td>
</tr>
<tr>
<td>第20回リーダーを目指す技術者倫理セミナー —品質の逸脱はなぜ防げないのでか：データ改ざん・ねつ造のパターンを知る—（一般社団法人日本機械学会（技術と社会部門、イノベーションセンター）</td>
<td></td>
<td>2018年6月9日（土）東京工業大学キャンパスイノベーションセンター東京5階501号室（〒108-0023東京都港区芝3-3-6）</td>
<td>一般社団法人日本機械学会 機械力学・計測制御部門 橋口公美 TEL：03-5360-3506 FAX：03-5360-3505 E-mail：hashiguchi@jsme.or.jp</td>
</tr>
<tr>
<td>No.18-32講習会 マルチボディシステム運動学の基礎</td>
<td>一般社団法人日本機械学会（機械力学・計測制御部門）</td>
<td>2018年7月5日（木）東京大学 生産技術研究所 駒場リサーチキャンパス中セミナールーム1（An401, An402）（東京都目黒区駒場4丁目6番1号）</td>
<td>一般社団法人日本機械学会 機械力学・計測制御部門 橋口公美 TEL：03-5360-3506 FAX：03-5360-3505 E-mail：hashiguchi@jsme.or.jp</td>
</tr>
<tr>
<td>No.18-33講習会 マルチボディシステム動力学の基礎</td>
<td>一般社団法人日本機械学会（機械力学・計測制御部門）</td>
<td>2018年7月6日（金）東京大学 生産技術研究所 駒場リサーチキャンパス中セミナールーム1（An401, An402）（東京都目黒区駒場4丁目6番1号）</td>
<td>一般社団法人日本機械学会 機械力学・計測制御部門 橋口公美 TEL：03-5360-3506 FAX：03-5360-3505 E-mail：hashiguchi@jsme.or.jp</td>
</tr>
<tr>
<td>ICINCO 2018（15th International Conference Informatics Control, Automation and Robotics）</td>
<td>INSTICC</td>
<td>2018年7月29日（日）～7月31日（火）Porto, Portugal</td>
<td>ICINCO Secretariat E-mail：icinco.secretariat@insticc.org</td>
</tr>
<tr>
<td>平成30年度工学教育研究講演会</td>
<td>日本工学教育学会 東海工学教育協会</td>
<td>2018年8月29日（水）～8月31日（金）名古屋工業大学</td>
<td>日本工学教育学会 川上理英 TEL：03-5442-1021 FAX：03-5442-0241 E-mail：kawakami@jsee.or.jp</td>
</tr>
<tr>
<td>第34回ファジィシステムシンポジウム（FSS2018）</td>
<td>日本知能情報ファジー学会</td>
<td>2018年9月3日（月）～9月5日（水）名古屋大学（〒464-8603名古屋市千種区不老町）</td>
<td>日本知能情報ファジー学会事務局担当：田安 〒820-0067福岡県福岡市中央区丸善720-41（一財）ファジィシステム研究所内 TEL：0948-24-3355 FAX：0948-24-3356 E-mail：soft@fssirc.or.jp</td>
</tr>
<tr>
<td>ViEW2018ビジョン技術の実利用ワークショップ</td>
<td>公益社団法人精密工学会 画像応用技術専門委員会</td>
<td>2018年12月6日（木）～12月7日（金）パシフィコ横浜アネックス・ホール（横浜市西区みなとみらい1-1-1）</td>
<td>アドコムメディア（株） 内 画像応用技術専門委員会事務局「ViEW2018」係 〒169-0073新宿区百人町2-21-27 TEL：03-3367-0571 E-mail：iaip@adcom-media.co.jp</td>
</tr>
<tr>
<td>第24回人工生命とロボットに関する国際シンポジウム（AROB23rd2019）</td>
<td>一般社団法人人工生命とロボット国際学会</td>
<td>2019年1月23日（水）～1月25日（金）B-con Plaza</td>
<td>一般社団法人人工生命とロボット国際学会内AROB事務局 TEL：097-594-0181 FAX：097-547-9242 E-mail：arobsecr@isarob.org URL：http://isarob.org/symposium/</td>
</tr>
</tbody>
</table>
本会後援・協力行事

<table>
<thead>
<tr>
<th>会合名</th>
<th>開催日・会場・その他</th>
<th>申込・問合せ先</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHK 学生ロボコン 2018 ～ ABU アジア・太平洋ロボコン代表選考会～</td>
<td>2018年6月10日(日)大田区総合体育館</td>
<td>(株)NHK エンタープライズ
〒150-0047 東京都渋谷区神山町 5-5 NRビル 3F
TEL:03-5454-3971 FAX:03-5454-3973</td>
</tr>
</tbody>
</table>
第8回 ロボット大賞
未来を拓くロボットを表彰!
優れたロボットや部品・ソフトウェア、それらの先進的な活用や研究開発、人材育成の取組などを表彰します。

募集期間 2018年4月23日(月) 〜 6月29日(金) ※29日(金)必着
表彰式 2018年10月17日(水)

http://www.robotaward.jp/
理事会報告

日時: 2018年3月23日(金) 14:45 - 17:00
場所: 全水道会館 5階 中会議室
出席理事: 澤俊裕, 浅田稔, 松日楽信人, 矢野寛, 原口林太郎, 有坂寿洋, 中嶋秀朗, 菅原淳, 正宗賢, 山本晃生, 緒方信一, 田中浩康, 稲邑哲也, 岩田明治, 中村明, 石橋一郎(記)
出席監事: 髙西淳夫, 吉見卓
出席理事数: 18 名(理事総数 20 名, 過半数 11 名以上)
出席監事: 髙西淳夫, 吉見卓

（議事）
1. 会長・副会長・代表理事の選定
議事に先立ち, 昨年度から引き続き, 会長および副会長3名をもって法人法上の代表理事とすることが確認された．
代表理事(会長): 澤俊裕, 代表理事(副会長): 浅田稔, 松日楽信人

2. 議事録確認
以下の議事録が確認され承認された．
日本ロボット学会第73回理事会議事録

3. 定例報告事項
(1) 2018年度入退会申込(2018年3月23日現在)
正会員: 2,947名(入会7名,復会1名,退会0名,会員資格喪失0名,種別変更:学A→正:2名増,正→学A:1名減,終身→正:1名増,正→終身:1名増,終身→名誉:2名減),学生会員A:644名(入会4名,退会11名,会員資格喪失0名,種別変更:学A→正:2名減,正→学A:1名増),学生会員B:268名(入会9名,退会4名,種別変更:0名),終身会員:108名(種別変更:正→終身:1名増,終身→名誉:1名減),名誉会員:12名(種別変更:正→名誉:2名増,終身→名誉:1名増)

（新入会員）
(2018年3月入会の会員)

正 会 員
16919 井上 友浩 16922 山崎 一徳 16923 王 忠奎
16925 小林 隆 16926 谷村 稔 16929 神崎 司
16930 鈴木・夢貴

学生 会 員
16911 高橋 賢吾 16912 牛田 智之 16913 佐藤 一真
16914 長谷川正樹 16915 山口 佐也 16916 前田孝次郎
16917 松村 一映 16918 森口 宽 16920 佐藤 勝
16921 能勢 翼 16924 川崎 智貴 16927 田中 浩輔
16928 高橋 健太

JRSJ Vol. 36 No. 4 ーお知らせ 30ー May, 2018
Special Issue on
Robot Vision for Dexterous Manipulation and Interaction

Guest Editors: Dr. Haiyan Wu (Teknologisk Institut, Denmark)
 Prof. Kolja Kühnlenz (Coburg University of Applied Sciences and Arts, Germany)

Submission Deadline: July, 31, 2018
Publication in Vol. 33, No. 9 (May 2019)

Changing application areas of today's robots towards complex tasks, overlapping workspaces and
direct physical contact also with humans in public, industrial or home environments require
appropriate computer vision approaches in order to facilitate efficient, safe and smooth
manipulation and interaction. Emerging fields of application include e.g. cloth handling, agri- and
horticulture, food industry, human-robot interaction in industrial, assistance and care scenarios,
medical and surgical applications, and others. Such applications for robotic dexterous handling
require extended visual perception capabilities including all aspects of the perceptual chain
including feature extraction, articulated, deformable and dynamic object modeling, multi-focal and
multi-camera vision, dynamic vision and vision-based control, planning aspects, higher level
cognitive functions, innovative vision sensor design, innovative architectures, etc. This special
issue gathers contributions, which include, but are not limited to all these aspects of robot vision
for dexterous manipulation and interaction. Novel field application papers are also welcome.

Submission: The full-length manuscript (either PDF file or MS word file) should be submitted
by July 31, 2018 to the office of Advanced Robotics, the Robotics Society of Japan through the
homepage (http://www.rsj.or.jp/ar/submission). Instructions to the Authors and the sample form of
the manuscript are available at the homepage. Please send another copy to the guest editor Prof.
Kolja Kühnlenz (kolja.kuehnlenz@hs-coburg.de) for submission confirmation.
Advanced Robotics Call for Papers

Special Issue on "Cyborg and Bionic Systems"

Guest Co-Editors: Prof. Tasisuke Masuda, Nagoya University, Japan
 Prof. Arianna Menciassi, Scuola Superiore Sant'Anna, Italy
 Prof. Qining Wang, Peking University, China

Submission deadline: 30 May 2018

The main purpose of this special issue is to publish frontier research and realistic application on cyborg and bionic systems, which are concerned with hybrid fusion of organic and biomechatronic body parts with the integration of some artificial components or technology like bio-hybrid actuators and sensors. One of the primary goals is to make an organism restored or enhanced beyond its original biological characteristics. In particular, the cyborg and bionic systems is a promising research direction to meet the requirements for better life of human beings, such as regeneration medicine, neuro-control, and rescue relief. With rapid development of bionic technology and nanotechnology, we think that a cyborg and bionic system can assist human to conquer many limitations such as disease, speed, strength, as well as intelligence. The topic of the special issue includes, but are not limited to

- Micro/Nano Robotics
- Bio-Cell assembly and tissue fabrication
- Micro bio sensor and actuator fabrication
- Bio-energy source and management control
- Brain analysis and neural network
- Neuro-Control and communication
- Rehabilitation robotics
- Prosthesis and exoskeleton robotics
- Medical surgical robots
- Biomimetic robots
- Human 2.0 and human interface
- Cyber-Physical bio-system

Submission: The full-length manuscript (either PDF file or MS word file) should be sent by to the office of Advanced Robotics, the Robotics Society of Japan through the homepage of Advanced Robotics (http://www.rsj.or.jp/AR/submission). Sample form of the manuscript as well as the Instruction for Authors is available at the homepage.
ADVANCED ROBOTICS Vol.32, Issue 5

Abstract

Full Papers

Robust adaptive admittance control of an exoskeleton in the presence of structured and unstructured uncertainties
Hossein Shahi, Aghil Yousefi-Koma & Majid Mohammadi Moghaddam
Pages: 242-265
Keywords: Admittance control, composite adaptive control, Lyapunov redesign, mixed structured and unstructured uncertainties, locally weighted projection regression (LWPR), lower limb exoskeleton

Statistically optimized FOPID for output force control of SEAs
Somayeh Norouzi Ghazbi, Alireza Akbarzadeh & Iman Kardan
Pages: 231-241
Keywords: SEA, FOPID, Taguchi, tuning, ANOVA

Graphical Abstract

Normal contact stiffness identification-based force compensation for a hardware-in-the-loop docking simulator
Qian Wang, Chenkun Qi, Feng Gao, Xianchao Zhao, Anye Ren & Yan Hu
Pages: 266-282
Keywords: Hardware-in-the-loop simulation, space docking, contact, time delay, delay compensation, 6-DOF parallel robot

Graphical Abstract
名古屋大学大学院工学研究科 情報・通信工学専攻 教員公募

公募人員：准教授もしくは講師 1 名
所 際：大学院工学研究科 情報・通信工学専攻 情報システム講座
専門分野：制御システムに関する研究分野
特に、電動力に立脚した移動体（自動車・飛行体・ロボット）のためのモータドライブ・運動の制御に関する研究分野
担当科目：大学院工学研究科 情報・通信工学専攻 工学部 電気電子情報工学科における科目を担当
応募資格：博士の学位を有すること
任期：なし
適任時期：2018 年 12 月 1 日以降できるだけ早い時期
応募締切：2018 年 7 月 20 日（金）必着
書類送付先：〒464-8603 愛知県名古屋市千種区不老町 C3-1（631）
　名古屋大学大学院工学研究科 情報・通信工学専攻
　専攻長 河口信夫
　※書留で「情報・通信工学専攻教員応募書類在中」と朱書。
　さらに、封筒にレファレンス番号 IC20180720 と明記すること。
　なお、応募書類（USB メモリ）は返却しません。
問合先：情報・通信工学専攻 教授 道木慎二
　TEL：052-789-2778　FAX：052-789-3140
　E-mail：doki@nuee.nagoya-u.ac.jp
詳しくは：http://www.nuee.nagoya-u.ac.jp
第23回学術講演会講演概要集（予稿集CD-ROM付）
本学会個人会員 5,000 円
本学会個人会員以外 10,000 円
第24回学術講演会講演概要集（予稿集CD-ROM付）
本学会個人会員 5,000 円
本学会個人会員以外 10,000 円
第25回学術講演会講演概要集（予稿集CD-ROM付）
本学会個人会員 6,000 円
本学会個人会員以外 12,000 円
第26回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 6,000 円
本学会個人会員以外 12,000 円
第27回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 6,000 円
本学会個人会員以外 12,000 円
第28回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 6,000 円
本学会個人会員以外 12,000 円
第29回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 6,000 円
本学会個人会員以外 12,000 円
第30回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第31回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第32回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第33回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第34回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第35回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第36回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第37回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第38回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第39回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円
第40回学術講演会講演概要集（予稿集DVD-ROM付）
本学会個人会員 10,000 円
本学会個人会員以外 12,000 円

第14回 ロボティクスシンポジオ予稿集 10,000 円
第18回 ロボティクスシンポジオ予稿集 10,000 円

刊行物のご案内

日本ロボット学会誌
第31巻 第1号 (特集) 次世代ロボットのための知能化技術
第2号 [] ロボット教育論文特集号
第3号 [] ロボティクス研究のためのソフトウェアツールII
第4号 [] マニュレーショナ研究の最前線
第5号 [] 資源の為
第6号 [] 人間環境を推進するロボットのためのインタフェース設計号
第7号 [] 第30回日本ロボット学会学術講演会論文特集号I
第8号 [] 第30回日本ロボット学会学術講演会論文特集号II
第9号 [] ロボットのエージェンシーとインタクレーション
第10号 [] 日本ロボット学会工学研究グループ「ロボット工学」と「セ―
第11号 [] 第31回ロボティクスシンポジオ予稿集 10,000 円
第12号 [] 震災対応レスキューロボットの活動を振り返ってI
第13号 [] 震災対応レスキューロボットの活動を振り返ってII
第14号 [] 知能化する家電
第15号 [] 原点としての機巧
第16号 [] 探索ロボット開発の今と新しい試み
第17号 [] ロボット工学における最適化手法
第18号 [] 第31回日本ロボット学会学術講演会論文特集号
第19号 [] 探求に入り込むロボット技術
第20号 [] 高速ビジョンの応用展開
第21号 [] ヒューマンモデリングアンドエンハンスメント
第22号 [] 水環境における生物模倣型移動ロボット
第23号 [] データサイエンス研究のロボティクス応用にむけて
第24号 [] ロボット教育論文特集号II
第25号 [] 今更聞けないロボットの基礎と未解決問題
第26号 [] 製造業向けロボット
第27号 [] 高温環境の応用展開
第28号 [] 次世代アクチュエータが描く未来像
第29号 [] ロボットのための地図表現
第30号 [] 第31回日本ロボット学会学術講演会論文特集号
第31号 [] ロボットのための地図表現
第32号 [] 第32回日本ロボット学会学術講演会論文特集号
第33号 [] 震災対応レスキューロボットの活動を振り返ってII
第34号 [] 飛行ロボット研究の最前線I
第35号 [] 飛行ロボット研究の最前線II
第36号 [] ロボット技術の実用化
第37号 [] マニュレーショナの最新動向
第38号 [] IoTとロボティクス
第39号 [] 人工知能とロボティクス
第40号 [] ROS:Robot Operating System
第41号 [] スマート農業技術の最前線
第42号 [] スワームロボティクスと昆虫生態科学
第43号 [] 身体性システム科学
第44号 [] 高速ビジョンと社会実装
第45号 [] ロボットのためのセンシング技術─視覚・力覚─
第46号 [] ロボット・ロボティクス
第47号 [] サステナブルを目指すロボティクス
第48号 [] ヒューマノイド・ロボティクス2016夏の学校
第49号 [] 高速ビジョンと社会実装
第50号 [] 人工知能とロボティクス

※以上のものはいずれも消費税込、送料は別にかかります。
一般社団法人 日本ロボット学会　平成 30・31 年度（2018・2019 年度）役員

理事

会長
澤 俊裕（安川電機）
副会長
浅田 稔（東京大学）
松川 慎信（芝浦工業大学）
広務担当
石橋 一郎（安川電機）
細田 祐司（日本ロボット学会）
＊矢野 寛（三菱電機特機システム）

財務担当
原口林太郎（三菱電機）
＊有坂 寿洋（日立製作所）
企画担当
中嶋 秀朗（和歌山大学）
＊菅原 淳（東芝）
学会誌担当
正宗 賢（東京女子医大）
＊山本 晃生（東京大学）

監事
高西 淳夫（早稲田大学）
＊吉見 卓（芝浦工業大学）

欧文誌担当
原田 研介（大阪大学）
＊和田 正義（東京農工大学）

事業担当
大原 賢一（名城大学）
＊辻 俊明（静岡大学）

学術講演会担当
大日方五郎（中部大学）
＊岩田 浩康（早稲田大学）

国際担当
中嶋 一博（ホンダ・リサーチ・インターナショナル・ジャパン）
＊稲邑 哲也（日本情報学研究所）

無印 2017年3月より2019年総会時まで
＊印 2018年3月より2020年総会時まで

一般社団法人 日本ロボット学会 代議員

任期：2015年3月～2019年3月　50音順

相山 康道（筑波大学）
安藤 慎悟（安川電機）
安藤 健（パナソニック）
一丸 勇二（安川電機）
岩田 浩康（早稲田大学）
牛見 宣博（九州産業大学）
梅田 和昇（中央大学）
江丸 貴紀（北海道大学）
遠藤 玄（東京工業大学）
大明 準治（東芝）
大田 祐介（千葉工業大学）
岡 宏一（高知工科大学）
岡田 聡（日立製作所）
加藤 龍（早稲田大学）
岡岡 幹（日立製作所）
木野 仁（福岡工業大学）
栗栖 正充（東京電機大学）
姜 山（富士通研究所）
菅原 雄介（東京工業大学）
杉 正夫（電気通信大学）
高信 英明（工学院大学）
土橋 宏規（和歌山大学）
中村 幸博（NTT）
原田 透（東京大学）
松下光次郎（岐阜大学）
松本 高斎（日立製作所）
松本 高斎（日立製作所）
毛利 哲也（岐阜大学）

一般社団法人 日本ロボット学会 代議員

任期：2017年3月～2021年3月　50音順

安孫子聡子（芝浦工業大学）
安藤 慶昭（産業技術総合研究所）
石井 裕之（早稲田大学）
梅津 真弓（安川電機）
奥田 晴久（三菱電機）
小松 優（III）
尾崎 功一（宇都宮大学）
松田 慎吾（東北大学）
金鳥 義治（III）
包原 孝英（安川電機）
久保田哲也（川崎重工業）
小林 洋（大阪大学）
毎田 瑞穗（広島大学）
白石 浩司（三菱電機）
竹岡 年延（弘前大学）
田村 雄介（東京大学）
辻 徳生（金沢大学）
妻木 勇一（山形大学）
中村 恭之（和歌山大学）
中村 亮介（日立製作所）
服部委 誠（日立製作所）
平田 泰久（東北大学）
横田 研（佐世保工業高等専門学校）
森 武俊（東京大学）
山野 光裕（滋賀県立大学）
山本 達郎（日立製作所）
山本 大介（東芝）
吉見 卓（芝浦工業大学）
和田 一義（首都大学東京）

JRSJ Vol. 36 No. 4 May, 2018
第8回定時総会報告

日本ロボット学会誌 36 巻 4 号 一お知らせ 37一 2018年5月

3. 国際ロボット展 2017 (iREX2017) ブース出展
 期 日: 2017年11月29日(水)～12月2日(土)
 会 場: 東京ビッグサイト
 内 容: 国際ロボット展2017(iREX2017)にブース出展を行い、
 日本ロボット学会の活動紹介を行った。
 来客数: 250名

4. 学術講演会

オープンフォーラム（市民向けを含む一般公開企画 聴講無料）を
13セッション開催した。
- ロボットシュミュレーティ学習
- 在宅での介護や施設を連携に -- だれもが笑顔で過ごせるよう
 なケアとは --
- 2020年World Robot Summitは何を見れるのか？
- パネル討論「ロボット事業における中小企業の活躍の在り方」
- 学会はどんな調査・研究をしているの？ -- 研究委員会の活動
 を紹介します --
- 緊急向けの日本原子力学会との連携と課題
- アクティブ・ラーニング、PBLを実現するロボット教材
- 学術講演会参加学生向けシンポジウム
- このロボットがすごい2017
- 我が企業のロボット --ロボット関連企業の取り組み--
- 学生と企業のための交流サロン
- RSNPを利用したロボットサービスコンテスト2017～応募作品発表
 と審査、審査結果発表～
- 学術論文の読読の方法と、それを知ることでわかる論文の書き方
 ～投稿論文掲載までの道～

II. 学会誌「継続事業 2」[担当：学会誌理事] （定款第4条2号）

学会誌第35巻1号～10号を発行し、会員に配布した。各号の特集
テーマは次のとおりである。
第35巻1号 マニピュレーションの最新動向
第35巻2号 IoTとロボティクス
第35巻3号 人工知能とロボティクス
第35巻4号 ROS: Robot Operating System
第35巻5号 スマート農業技術の最前線
第35巻6号 スワームロボティクスと昆虫生態科学
第35巻7号 身体性システム学
第35巻8号 高速ビジョンと社会実装
第35巻9号 ロボットのためのセンシング技術 --視覚・力覚--
第35巻10号 タフ・ロボティクス

今年度は、IoT、人工知能、農業、災害対応ロボットなどの基礎的な分野か
ら、IoT、人工知能、ロボット開発プラットフォーム、身体性システムなど近年話題になっている内容、新時代の農業や災害対応ロボットなどの応用分野まで、多方面にわたり魅力的な企画を企画し、特別の1号ではロボットの基本である物体を操作するマニュアルに関するセッションについて、現在残されている課題や新しい取り組みについて特集し、非常に堅実な内容でスタートした。次の2号ではIoT、3号では人工知能最新の話題をを集約的に取り扱い、ロボット分野の学生の興味が高いであろうキーボードな内容を連続して取扱ったことが特徴として挙げられる。また、ロボットのソフトウェア開発プラットフォームであるROSに出展するなど、理論的内容だけでなく実装面についても精力的に取扱った。その他、農業、農業ロボティクス、身体性システム科学、高速ビジョン、センシング、災害対応ロボットなど多岐にわたり内容を纏め、理論と実装、流れの内容と堅実な内容について新鮮な分野と古くから研究が続けられている分野をバランス良く取扱っていることも特徴である。

年間の論文投稿件数は44件（前年度76件）、判定結果は採録可45%（前年度52%）であった。判定までの期間は平均150日、最短64日、
最長230日で、掲載までの期間は平均321日（前年度338日）であった。なお、評価点項目別の採択率は、新規性11%、有用性67%、提案性22%となっている。

一般記事に関しては、日本ロボット学会が共同主催しているIROS（IEEE/RSJ International Conference on Intelligent Robots and Systems）をはじめとしたロボティクス関連の学会への参加報告に加えて、ロボット工学セミナーの概要を記した実施報告を新たに掲載することとした。また、昨年の学術講演会で実施した「論文の通し方、教えます～ロボット学会誌掲載までの道～」の続きとして、今年の学術講演会では「学術論文の査読の作法と、それを知ることでわかる論文の書き方～投稿論文掲載までの道～」を1.5時間にわかり実施した。多数のご提案とご意見をいただき、非常に有益なオープンフォーラムになった。

広告の年度集計結果に関しては、学術講演会での展示企業などへの広告勧誘活動などを実施したが、件数は一昨年度59件、昨年度56件から、今年度48件と減少している。金額は4,126,680円であり、年度目標金額400万円に対して約100%となり、目標を達成した。金額ベースでは昨年（金額3,841,560円）から微増している。これまでの勧誘活動だけでなく、掲載広告のコンプライアンスチェック体制を強化しつつ、特定号を連動した広告プランなど、新たな模索を検討しつつ、広告出稿と論文投稿のインセンティブを連動させるなど、含めた施策を打っていく予定である。

III. 欧文誌（継続事業）(担当：欧文誌理事)(定款第4条2号)
2017年より、Editor in Chiefが新井史人教授（名古屋大学）から、細田耕教授（大阪大学）へと引き継がれ、Advanced Roboticsの安定した発展を維持させつつ、時流に即した新しい取り組みを行っていく予定である。

1. 欧文誌（Advanced Robotics）編集・発行
 Vol.31を発行した。各号の詳細は以下のとおりである。
 31/1 2017 Jan Embodied-Brain systems Science and Adaptive Intelligence (1)(9 papers)
 31/2 Jan Embodied-Brain systems Science and Adaptive Intelligence (2) (4 papers)
 31/3 Feb Regular Issue (4 papers)
 31/4 Feb Spatial Reasoning and Interaction for Real-World Robotics (5 papers)
 31/5 Mar Regular Issue (4 papers)
 31/6 Apr Regular Issue (4 papers)
 31/7 Apr Regular Issue (4 papers)
 31/8 May Regular Issue (4 papers)
 31/9 May Regular Issue (4 papers)
 31/10 May Regular Issue (4 papers)
 31/11 Jun Regular Issue (4 papers)
 31/12 Jun Regular Issue (4 papers)
 31/13 Jul Regular Issue (4 papers)
 31/14 Jul Regular Issue (4 papers)
 31/15 Aug Regular Issue (4 papers)
 31/16 Aug Regular Issue (4 papers)
 31/17 Sep Regular Issue (4 papers)
 31/18 Sep Regular Issue (5 papers)
 31/19 Oct Advanced Manipulation (Survey Paper 6 papers) 0.01
 31/20 Oct Advanced Manipulation (Research Paper 6 papers) 0.02
 31/21 Nov Sec Focused on Superhuman Technology (2 paper) 0.03
 31/22 Nov Selected and Extended Papers from SIMPAR 2016 (6 papers) 0.04
 31/23 Dec Advanced Manipulation (Research Paper 8 papers) 0.05
 31/24 Dec Advanced Manipulation (Research Paper 8 papers) 0.06

2. 論文の投稿、査読の状況
 平成29年（2017年）における年間論文投稿総数は502件（新規投稿論文・376件、再投稿論文・126件）であった（下表参照）。投稿論文の採択率は、23.17%であった。Editorリジェクトを積極的に行っているが、論文投稿総数が500件程度であり安定している状況である。
 なお、2016年度の投稿から第1回のディシジョンまでの期間は平均で61.5日であった（2015年度は64日、2014年度は78日、2013年度は80日）。これにより90日を目安にしているが、SclorOneの導入の効果もあり目標を4年連続で達成しており、その期間も徐々に減少している。また、投稿論文に対してCrossCheckTM softwareが活用され、論文の事前チェックを行っている。

3. 企画／編集／発行作業
 今年度も、日本の優れた研究を世界に発信する特集号「Cutting Edge of Robotics in Japan」を企画し、学術講演会論文発表者への論文投稿を呼びかける活動を行った。

4. 国際学術誌としての認知度と評価の向上
 Institute for Scientific Information(ISI)社のCitation Index（インパクトファクター）の推移を以下に示す。ここ数年、0.5あたりで推移していたが、2016年のインパクトファクターは0.920に大幅に上昇した。今後もTaylor & Francis社との連携を通して、戦略的にこれを上昇させる検討を行う予定である。

5. 共同事業者であるTaylor & Francis社との契約・交渉
 以下のような契約内容の更新を行った。
 2017年度(Vol.31)年間発行数：24号
 1. 会員全員の電子購読料金 26,664ユーロ/年
2. RSJへ支払われる編集料 15,000ユーロ／年（予定）
3. プリント版 会員価格 400ユーロ／Volume

採択された投稿論文は、掲載号発行前にTaylor and Francisにより電子出版され、閲覧・引用が可能となっている。採択決定から電子出版までは、早ければ1ヶ月以内で対応可能である。

2. RSJへ支払われる編修料 15,000ユーロ／年（予定）
3. プリント版 会員価格 400ユーロ／Volume

採択された投稿論文は、掲載号発行前にTaylor and Francisにより電子出版され、閲覧・引用が可能となっている。採択決定から電子出版までは、早ければ1ヶ月以内で対応可能である。

4. 調査・研究（継続事業4）[担当：企画理事]（定款第4条3号）

前年度から継続して、以下の調査・研究専門委員会活動を実施した。

（1）研究専門委員会（※本年度新設規程）

委員会名	委員長	発足	種別
遊びとロボット研究専門委員会※ | 橋本秀紀 | 2017年5月 | I種
ロボット考学研究専門委員会※ | 上岡雅彦 | 2010年3月 | I級
ヒューマノイド・ロボティクス研究専門委員会※ | 杉原知道 | 2017年4月 | I種
ソフトロボティクス研究専門委員会※ | 新山龍馬 | 2017年4月 | II種
開かれた知能研究専門委員会 | 下田真吾 | 2014年9月 | I種
インテリジェントホームロボティクス研究専門委員会 | 岡田浩之 | 2014年8月 | II種
データ工学ロボティクス研究専門委員会 | 成田雅彦 | 2010年3月 | I級
ネットワークを利用したロボットサービス研究専門委員会 | 成田雅彦 | 2010年3月 | I級
産学連携調査研究委員会 | 小平紀生 | 2013年5月 |
広域災害対応に関する技術基盤調査研究委員会 | 深間 一 | 2013年1月 |
技術・カテゴリ別委員会

委員会名	委員長	発足	種別
ロボット教育事業計画委員会 | 琴坂信哉 | 2015年4月 |
建設ロボット委員会 | 栄桝尚光 | 2013年10月 |

5. 表彰（継続事業5）[担当：企画理事]（定款第4条4号）

2017年9月第35回学術講演会において、学会誌論文賞3件、Advanced Robotics Best Paper Award 4件、実用化技術賞2件、研究奨励賞8件、ロボティクスシンポジウム研究奨励賞3件、ロボット活用社会貢献賞1件、功労賞1件の表彰を行った。

（1）学会論文賞

（1）タイグレットポジションを用いたロボットハンドによる人間の持ち替え動作の模倣

（日本ロボット学会誌第33巻第7号, pp. 514-523）
工藤俊亮（電気通信大学）、ビナヤウェンラン・ボンクリン（東京大学）、佐藤啓宏（東京大学）、池内克史（東京大学）

（2）等身大ヒューマノイドにおける接触姿勢計画と歩行動作修正に基づく大型重物全身押し操作行動の実現

（日本ロボット学会誌第33巻第7号, pp. 448-457）
室岡雅樹（東京大学）、小林義光（東京大学）、野沢臨一（東京大学）、岡田真平（東京大学）、徳島篤（東京大学）

（3）弾性可変形機能を用いた食品テクスチャセンシング

（日本ロボット学会誌第33巻第9号, pp. 631-639）
柴田敏幸（大阪大学）、石原清光（三栄源エフ・エフ・アイ（株））、中尾英浩（三栄源エフ・エフ・アイ（株））、池上聡（三栄源エフ・エフ・アイ（株））、中馬誠（三栄源エフ・エフ・アイ（株））、東森充（大阪大学）
お知らせ
第34回学術講演会／3B1-01
笠井宥佑（名古屋大学）
外部駆動高速アクチュエータを統合した局所的オンチップ流体制御

第34回学術講演会／3Y2-03
岸龍弘（東北大学）
外部駆動高速アクチュエータを統合した局所的オンチップ流体制御

第34回学術講演会／1W2-05
小椎尾侑多（東京大学）
防水スーツ着用ヒューマノイドロボットによる水から受ける力を考慮した水中歩行制御

第34回学術講演会／1W1-06
佐瀬一弥（北海道大学）
領域分割された医用画像の有限要素メッシュ埋め込みにおけるトポロジ保存手法

第34回学術講演会／2U1-04
高根英里（東北大学）
面状全方向クローラ移動体“Omni-Board”—第4報：横方向用履帯の傾き変位許容実験と全周クローラの動作実験—

第34回学術講演会／1G3-05
野村陽人（東北大学）
スクリュー式差動回転機構～全方向駆動車輪としての具現化～

第34回学術講演会／2G1-07
藤田政宏（東北大学）
内体積可変メカニズムを有するトーラス袋状グリッパ機構—全方向なじみグリッパにおける大型対象物の把持性の向上—

5. ロボティクスシンポジウム研究奨励賞
（1）熱田洋史（大阪大学）
力学変容に基づく二脚ロボットの平面全方位歩行制御
第22回ロボティクスシンポジオン／5C2

（2）水鳥雅之（金沢大学）
濡れた物体でも安定把持可能な流体指表面形状の検討
第22回ロボティクスシンポジオン／2D3

（3）山本知生（東北大学）
配管内とオープンスペースを走行可能な空圧駆動型柔軟索状ロボット
第22回ロボティクスシンポジオン／4D2

6. ロボット活用社会貢献賞
（1）国際ロボット展主催等の企画・報道活動によるロボット利活用推進・市場育成への貢献
（株）日刊工業新聞社

7. 功労賞
（1）Advanced Roboticsの持続的発展への貢献
新井史人（名古屋大学）

II. 国際（継続事業6）[担当：国際理事]
（定款第4条第5号）

1. 国際委員会活動
国際委員会は、日本のロボット研究の国際的優位性を基盤にしてRSJの国際的な存在感と地位を確立することを目的とし、このための戦略を策定し実施するための委員会として活動している。今年度もこれまでの活動を継続し、
- 国内外の外国人研究者向けの研究発表の機会提供サービス、
- 国際会議を通じての学会の国際化に向けて取り組み、
- Asian Robotics Society Union（ARSU）をベースとしたアジア圏でのロボット学際学会間の協調体制の活性化
の三つを柱に活動を行った。

2. 第35回日本ロボット学術講演会における国際セッションの実施
9月11日～14日に東京大学にて開催された第35回日本ロボット学術講演会において、例年通り国際セッションの司会、発表、質疑応答のすべてが英語で行われる「国際セッション」を設けた。発表者には日本に滞在する留学生・研究者が多く含まれ、日本ロボット学協がこのような外国人に研究発表の機会を提供することは、外国人会員に対する有益なサービスであるとともに、日本ロボット学会が欧州の人々に知ってもらうための貴重な機会である。また日本の若手研究者にとって、国際学会で発表する前の練習としても利用されており、こういった場を提供できる意義は大きい。なお、会員でなくても登壇することも認めている。

今年度の第35回日本ロボット学会学術講演会においては、以下の三つのセッションが開催され、計72の論文発表があった。
- IS1: Special issue on Robotics x AI 15件
- IS2: Special issue on assistive robotics 15件
- IS3: Robotics, mechatronics and control 15件

3. 国際交流活動
IROS2017会期中に開催された第12回アジアロボット学会連合サミットミーティング（12th Asian Robotics Society Union Summit Meeting）に参加した。これはアジア＋オセアニアのロボット系学会の会長が年に1度集まって情報交換する場である。

日時：2017年9月26日11：45～14：15（IROS2017期間中）
場所：バンクーバーホテルコンベンションセンター3F 302号室

参 加 者：
[ARAA] (Australian Robotics and Automation Association, Australia and New Zealand)
Denny Oetomo, The University of Melbourne
Ho Seok Ahn, The University of Auckland

[CAA] (Chinese Association of Automation, China)
Lianqing Liu, National Robotics Standardization General Working Group of China/Shenyang Institute of Automation

[KROS] (Korea Robotics Society, Korea)
Hyouk Ryeol Choi, vice president of KROS, Sungkyunkwan University
Ja Choon Koo, vice president of KROS, Sungkyunkwan University

[RSJ] (Robotics Society of Japan, Japan)
Toshihiro Sawa, president of RSJ
Tomohiro Shibata, executive board of international affairs of RSJ
Kazuhiko Nakadai, executive board of international affairs of RSJ
Yuji Hosoda, director of general affairs and secretary-general of RSJ

[RTS] (Robotics Society of Taiwan (RST))
Li-Chen Fu, National Taiwan University

[TRS] (Thai Robotics Society, Thailand)
Nantida Nillahoot, Mahidol University
Ronnapee Chaichaowarat, Tohoku University

主な議題：
（1）ARSU ホームページ（http://www.asian-robotics.org/）の更新と研究成果情報の共有。ARSU ホームページシステムおよび掲載コンテンツ構築完了、RSJが継続してメンテ管理できるようにシステムの運用を開始
（2）新しいメンバーの開拓
（3）次回ホストの決定：マドリッド開催、RST（台湾）主催

RTS）

4. 国際会議への対応
RSJが共催となっているRO-MANとIROSに対し、以下の活動を行った。

（1）26th IEEE International Symposium on Robot and Human Interactive Communication（RO-MAN2017）
期間：2017年8月28日～9月1日
会場：Pestana Palace Hotel, Lisbon, Portugal

8月28日にスチューディング会議が開催され、会長の代理で国際担当理事1名が出席し、スポンサー学会の体制や今後の開催計画などを確認した。2018年より、IEEEのConferenceに昇格することが決まり、RSJとしてはIROSと同じ扱いとして、正式に二つのConferenceのスポンサーとなることになった。また、国際委員会活動における国際セッションの実施において、例年通り国際セッションは設けられ、発表者には日本に滞在する留学生・研究者が多く含まれ、日本ロボット学会がこのような外国人に研究発表の機会を提供することは、外国人会員に対する有益なサービスであるとともに、日本ロボット学会が欧州の人々に知ってもらうための貴重な機会である。また日本の若手研究者にとって、国際学会で発表する前の練習としても利用されており、こういった場を提供できる意義は大きい。なお、会員でなくても登壇することも認めている。

今年度の第35回日本ロボット学会学術講演会においては、以下の三つのセッションが開催され、計72の論文発表があった。
- IS1: Special issue on Robotics x AI 15件
- IS2: Special issue on assistive robotics 15件
- IS3: Robotics, mechatronics and control 15件

3. 国際交流活動
IROS2017会期中に開催された第12回アジアロボット学会連合サミットミーティング（12th Asian Robotics Society Union Summit Meeting）に参加した。これはアジア＋オセアニアのロボット系学会の会長が年に1度集まって情報交換する場である。

日時：2017年9月26日11：45～14：15（IROS2017期間中）
場所：バンクーバーホテルコンベンションセンター3F 302号室

参 加 者：
[ARAA] (Australian Robotics and Automation Association, Australia and New Zealand)
Denny Oetomo, The University of Melbourne
Ho Seok Ahn, The University of Auckland

[CAA] (Chinese Association of Automation, China)
Lianqing Liu, National Robotics Standardization General Working Group of China/Shenyang Institute of Automation

[KROS] (Korea Robotics Society, Korea)
Hyouk Ryeol Choi, vice president of KROS, Sungkyunkwan University
Ja Choon Koo, vice president of KROS, Sungkyunkwan University

[RSJ] (Robotics Society of Japan, Japan)
Toshihiro Sawa, president of RSJ
Tomohiro Shibata, executive board of international affairs of RSJ
Kazuhiko Nakadai, executive board of international affairs of RSJ
Yuji Hosoda, director of general affairs and secretary-general of RSJ

[RTS] (Robotics Society of Taiwan (RST))
Li-Chen Fu, National Taiwan University

[TRS] (Thai Robotics Society, Thailand)
Nantida Nillahoot, Mahidol University
Ronnapee Chaichaowarat, Tohoku University

主な議題：
（1）ARSU ホームページ（http://www.asian-robotics.org/）の更新と研究成果情報の共有。ARSU ホームページシステムおよび掲載コンテンツ構築完了、RSJが継続してメンテ管理できるようにシステムの運用を開始
（2）新しいメンバーの開拓
（3）次回ホストの決定：マドリッド開催、RST（台湾）主催

4. 国際会議への対応
RSJが共催となっているRO-MANとIROSに対し、以下の活動を行った。

（1）26th IEEE International Symposium on Robot and Human Interactive Communication（RO-MAN2017）
期間：2017年8月28日～9月1日
会場：Pestana Palace Hotel, Lisbon, Portugal

8月28日にスチューディング会議が開催され、会長の代理で国際担当理事1名が出席し、スポンサー学会の体制や今後の開催計画などを確認した。2018年より、IEEEのConferenceに昇格することが決まり、RSJとしてはIROSと同じ扱いとして、正式に二つのConferenceのスポンサーとなることになった。また、国際委員会活動における国際セッションの実施において、例年通り国際セッションは設けられ、発表者には日本に滞在する留学生・研究者が多く含まれ、日本ロボット学会が
事2名がRSJ/KROS Distinguished Interdisciplinary Research Awardの審査委員として加わり、表彰式で贈賞した。

期間：2017年9月24日～9月28日
会場：Vancouver convention center, Vancouver, Canada

(a) 9月23日、11:30～17:00 に IROS Advisory/Steering Committee Meetingが開催され、会長1名、副会長1名、国際担当理事2名、監事1名、理事・事務局長1名（計6名）が参加し、今後の開催体制や開催計画などを確認した。IROS 2018では努力目標、IROS 2019から義務化することになった。予算の考え方など詳細については継続議論となった。

(b) 9月25日、12:00～13:00 に産学連携を目的とした RSJ-IAC Lunch (RSJ Lunch for Industry and Academia Collaboration)を企画開催した。

(c) 9月25日、14:30～17:30に若手研究者の教育と交流を目的としたRSJ Tutorialを企画開催した（参加費無料）。

5. 国際会議共催/協賛
共催となっているRO-MANおよびIROSを含め、本会に関連する国際会議を共催（2件）、協賛（7件）、後援（4件）した（2017年1月～12月31日審査分）。

6. 学術講演会（その他事業1）[担当：学術講演会理事]
（定款第4条1号）

（1）第35回学術講演会
日：2017年9月11日（月）～14日（木）
会場：東洋大学 川越キャンパス（埼玉県川越市）
組織：実行委員長：松元明弘（東洋大学）
プログラム委員長：山下 泰（東京大学）
発表件数：602件
一般セッション：152件 43セッション 218件
オーガナイズドセッション：74件 43セッション 255件
国際セッション：3件 3セッション 14件
オープンフォーラム：13件

特別講演
講師：坂村 健氏（INJAD 東洋大学情報連携学科部部長）

タイトル：IoTからIoSへ 社会に溶け込むロボット

【参加者数：996名】
正会員／終身会員（事前）：310名 （当日）：168名
学生会員（事前）：199名 （当日）：25名
協賛後援団体一般会員（事前）：27名 （当日）：18名
協賛後援団体学生会員（事前）：46名 （当日）：5名
一般非会員（事前）：18名 （当日）：53名
学生非会員（事前）：62名 （当日）：15名
優待券利用の賛助会員（当日）：22名
優待券非利用の賛助会員（事前）：2名 （当日）：6名
展示出展企業参加（事前）：4名 （当日）：8名
無料招待者：8名

【懇親会：435名】
一般・有料（事前）：146名 （当日）：45名
学生・有料（事前）：94名 （当日）：10名
協賛企業・有料（当日）：7名
無料招待者（受賞者等）：33名

（2）第105回「ロボットに使えるビジョン技術：基礎から応用まで」
日：2017年5月23日（火） 東京大学 武田先端知ビル 武田ホール
講師：土田隆一（千葉工業大学）、岡谷貴之（東北大学）、藤原 元治（福井大学）、森原 伸（大阪大学）
オーガナイザー：小川原光一（和歌山大学）
参加者：147名 （会員・協賛：34名、会員・協賛（学生）：21名、会員外：31名、会員外（学生）：19名、賛助等招待：18名、賛助等優待：5名、遠隔：19名）

（3）第106回「ロボットの作り方～ROSを使用した画像処理とマニピュレータ制御～」
日：2017年6月17日（土）、18日（日） 筑波大学 筑波キャンパス
講師：駒田佳（トヨタ自動車）
オーガナイザー：ジェネク士（産業技術総合研究所）、鈴木 拓央（愛知県立大学）
参加者：193名 （会員・協賛：48名、会員・協賛（学生）：2名、会員外：31名、会員外（学生）：19名、賛助等招待：18名、賛助等優待：5名、遠隔：19名）

（4）第107回「インタラクションにより人や環境に適応するロボット・AIの行動戦略」
日：2017年8月8日（火） 東京大学 武田先端知ビル 武田ホール
講師：三宅陽一郎（スクウェア・エニックス）、小田嶋茂雄（日本ユニシス）、高橋 和彦（イドック）、長谷川宏（ATR）
参加者：71名 （会員・協賛：26名、会員・協賛（学生）：2名、会員外：11名、会員外（学生）：16名、賛助等招待：3名、賛助等優待：2名）

（5）第108回「そのづくりを変革する協調ロボットのための安全対策技術と人理解技術」
日：2017年9月4日（月） 東京大学 本郷キャンパス
講師：土田和弘（工藤電気機械）、中野秀次（横浜国立大学）
参加者：62名 （会員・協賛：14名、会員・協賛（学生）：2名、
2. 共催事業

本会に関連する国内行事（講演会、シンポジウム、講習会、展示会、コンテスト等）の共催・協賛・後援について審査を行った。共催7件、協賛78件、後援11件（平成29年度）。

主な国内共催事業：
(1) 第22回ロボティクスシンポジウム（期日：2017年3月15日（水）,16日（木））
(2) ロボカップジャパンオープン2017（期日：2017年5月3日（水）～5日（日））
(3) 知能ロボットコンテスト・フェスティバル2017（期日：2017年6月10日（土）、11日（日））
(4) 第17回レクイエムロボットコンテスト（期日：2017年8月11日（土）、12日（日））
(5) 第17回建設ロボティクスシンポジウム（期日：2017年8月26日（月）～8月30日（木））
(6) RSNPコンテスト（期日：2017年9月13日（水））
(7) つくばチャレンジ2017（期日：2017年11月5日（日）（本走行））

II. 法人処理 [担当：庶務理事]

1. 会員状況

<table>
<thead>
<tr>
<th></th>
<th>平成29年12月31日</th>
<th>平成28年12月31日</th>
<th>増 減</th>
</tr>
</thead>
<tbody>
<tr>
<td>名誉会員</td>
<td>9名</td>
<td>9名</td>
<td>0名</td>
</tr>
<tr>
<td>正会員</td>
<td>2,977名</td>
<td>2,957名</td>
<td>20名増</td>
</tr>
<tr>
<td>学生会員A</td>
<td>753名</td>
<td>1,028名</td>
<td>275名減</td>
</tr>
<tr>
<td>学生会員B</td>
<td>230名</td>
<td></td>
<td>230名增</td>
</tr>
</tbody>
</table>

2. 会員総数

会員総数4,076名（うち委任状提出：135名）

7. 学会の基盤強化

学会価値委員会にて、個人会員および賛助会員の拡大を目標に、学会誌記事の多様化、戦略的編集等の学会価値向上に向けた施策に努めました。また、直接的な個人会員増加施策として、学生会員と学生会員B（会誌送付有）と学生会員B（会誌送付なしで年会費割安）の選任を行いました。
の２種に分割した。さらに、学術講演会の参加登録に伴う入会キャンペーンを実施した。

8. 学会の社会的価値向上
若手教育、産学連携、国際化を３本の柱として強化している。若年層の工学教育および国際化の施策として第３回インターナショナルロボットハイスクールIRH2017を実施し国内外129名、8か国の参加を得、さらにはIRH2018の実施を決定した。産学連携については、学術講演会オープンフォーラムにて第３回中小企業産学連携パネルディスカッションを開催し、また日本ロボット工業会との産学連携活動を継続している。国際化については、共催国際学会のIROSおよびRo-MANでの当学会の積極的関与施策を進めた。

9. 学会サービスの向上
賛助会員や実用化技術賞受賞者に対するPR用学会ロゴの提供、学術講演会機器展示出展費の割引、無料化を進めた。また、新規ロボット工学ハンドブックの発刊に向けて編集体制構築を開始した。

X. 事業報告に係る附属明細書[担当：庶務理事]
事業報告の内容を補足する重要な事項はありません。
【第2号議案】
平成29年度決算報告

貸借対照表
平成29年12月31日現在
（単位：円）

<table>
<thead>
<tr>
<th>科目</th>
<th>当年度</th>
<th>前年度</th>
<th>増減</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ 資産の部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 流動資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>現金預金</td>
<td>215,087,956</td>
<td>208,115,808</td>
<td>6,972,148</td>
</tr>
<tr>
<td>現金</td>
<td>3,123,652</td>
<td>4,851,779</td>
<td>△ 1,728,127</td>
</tr>
<tr>
<td>貯金預金</td>
<td>59,232,227</td>
<td>58,850,314</td>
<td>381,913</td>
</tr>
<tr>
<td>振替口座</td>
<td>18,273,585</td>
<td>9,966,533</td>
<td>8,307,052</td>
</tr>
<tr>
<td>通貯金</td>
<td>989,505</td>
<td>989,497</td>
<td>8</td>
</tr>
<tr>
<td>仮払金</td>
<td>4,814,966</td>
<td>6,583,845</td>
<td>△ 1,768,879</td>
</tr>
<tr>
<td>流動資産合計</td>
<td>224,736,014</td>
<td>221,235,474</td>
<td>3,500,540</td>
</tr>
<tr>
<td>2. 固定資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 特定資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>退職給付引当資産</td>
<td>11,125,213</td>
<td>10,071,262</td>
<td>1,053,951</td>
</tr>
<tr>
<td>定期預金</td>
<td>21,000,000</td>
<td>21,000,000</td>
<td>0</td>
</tr>
<tr>
<td>特定資産合計</td>
<td>8,023,218</td>
<td>281,999</td>
<td>23,819,996</td>
</tr>
<tr>
<td>(2) その他固定資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電話加入権</td>
<td>76,264</td>
<td>25,205</td>
<td>51,059</td>
</tr>
<tr>
<td>敷金</td>
<td>63,000</td>
<td>63,000</td>
<td>0</td>
</tr>
<tr>
<td>保証金</td>
<td>2,500,000</td>
<td>2,500,000</td>
<td>0</td>
</tr>
<tr>
<td>その他固定資産合計</td>
<td>76,264</td>
<td>25,205</td>
<td>2,614,631</td>
</tr>
<tr>
<td>固定資産合計</td>
<td>8,099,482</td>
<td>307,204</td>
<td>26,434,627</td>
</tr>
<tr>
<td>資産合計</td>
<td>10,934,228</td>
<td>307,204</td>
<td>248,335,895</td>
</tr>
</tbody>
</table>

Ⅱ 負債の部			
1. 流動負債			
未払金	2,323,904		2,323,904
前受会費	23,432,000		23,432,000
前受入会金	11,000		11,000
預り金	758,426		758,426
仮受金	2,834,746	0	△ 1,804,879
流動負債合計	29,430,076	31,216,610	△ 1,796,534
2. 固定負債			
退職給付引当金	11,125,213	10,071,262	1,053,951
固定負債合計	11,125,213	10,071,262	1,053,951
負債合計	10,857,964	281,999	29,415,326

会計区分間振替勘定

<table>
<thead>
<tr>
<th>科目</th>
<th>当年度</th>
<th>前年度</th>
<th>増減</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅲ 正味財産の部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一般正味財産</td>
<td>0</td>
<td>0</td>
<td>219,022,038</td>
</tr>
<tr>
<td>正味財産合計</td>
<td>0</td>
<td>0</td>
<td>219,022,038</td>
</tr>
<tr>
<td>負債及び正味財産合計</td>
<td>10,834,228</td>
<td>307,204</td>
<td>248,335,895</td>
</tr>
</tbody>
</table>

貸借対照表内訳表
平成29年12月31日現在
（単位：円）

<table>
<thead>
<tr>
<th>科目</th>
<th>当年度</th>
<th>前年度</th>
<th>増減</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ 資産の部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 流動資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>現金預金</td>
<td>215,087,956</td>
<td>208,115,808</td>
<td>6,972,148</td>
</tr>
<tr>
<td>現金</td>
<td>3,123,652</td>
<td>4,851,779</td>
<td>△ 1,728,127</td>
</tr>
<tr>
<td>貯金預金</td>
<td>59,232,227</td>
<td>58,850,314</td>
<td>381,913</td>
</tr>
<tr>
<td>振替口座</td>
<td>18,273,585</td>
<td>9,966,533</td>
<td>8,307,052</td>
</tr>
<tr>
<td>通貯金</td>
<td>989,505</td>
<td>989,497</td>
<td>8</td>
</tr>
<tr>
<td>仮払金</td>
<td>4,814,966</td>
<td>6,583,845</td>
<td>△ 1,768,879</td>
</tr>
<tr>
<td>流動資産合計</td>
<td>224,736,014</td>
<td>221,235,474</td>
<td>3,500,540</td>
</tr>
<tr>
<td>2. 固定資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 特定資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>退職給付引当資産</td>
<td>11,125,213</td>
<td>10,071,262</td>
<td>1,053,951</td>
</tr>
<tr>
<td>定期預金</td>
<td>21,000,000</td>
<td>21,000,000</td>
<td>0</td>
</tr>
<tr>
<td>特定資産合計</td>
<td>8,023,218</td>
<td>281,999</td>
<td>23,819,996</td>
</tr>
<tr>
<td>(2) その他固定資産</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電話加入権</td>
<td>76,264</td>
<td>25,205</td>
<td>51,059</td>
</tr>
<tr>
<td>敷金</td>
<td>63,000</td>
<td>63,000</td>
<td>0</td>
</tr>
<tr>
<td>保証金</td>
<td>2,500,000</td>
<td>2,500,000</td>
<td>0</td>
</tr>
<tr>
<td>その他固定資産合計</td>
<td>76,264</td>
<td>25,205</td>
<td>2,614,631</td>
</tr>
<tr>
<td>固定資産合計</td>
<td>8,099,482</td>
<td>307,204</td>
<td>26,434,627</td>
</tr>
<tr>
<td>資産合計</td>
<td>10,934,228</td>
<td>307,204</td>
<td>248,335,895</td>
</tr>
</tbody>
</table>

Ⅱ 負債の部			
1. 流動負債			
未払金	2,323,904		2,323,904
前受会費	23,432,000		23,432,000
前受入会金	11,000		11,000
預り金	758,426		758,426
仮受金	2,834,746	0	△ 1,804,879
流動負債合計	29,430,076	31,216,610	△ 1,796,534
2. 固定負債			
退職給付引当金	11,125,213	10,071,262	1,053,951
固定負債合計	11,125,213	10,071,262	1,053,951
負債合計	10,857,964	281,999	29,415,326

正味財産の部

<table>
<thead>
<tr>
<th>科目</th>
<th>当年度</th>
<th>前年度</th>
<th>増減</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅲ 正味財産の部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一般正味財産</td>
<td>219,022,038</td>
<td>213,725,257</td>
<td>5,296,781</td>
</tr>
<tr>
<td>正味財産合計</td>
<td>219,022,038</td>
<td>213,725,257</td>
<td>5,296,781</td>
</tr>
<tr>
<td>負債及び正味財産合計</td>
<td>10,834,228</td>
<td>307,204</td>
<td>248,335,895</td>
</tr>
</tbody>
</table>

JRSJ Vol. 36 No. 4 —お知らせ44— May, 2018
正味財産増減計算書
平成29年1月1日から平成29年12月31日まで

<table>
<thead>
<tr>
<th>科目</th>
<th>当年度</th>
<th>前年度</th>
<th>増 減</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ 一般正味財産増減の部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 経常増減の部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 経常収益</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 特定資産運用益</td>
<td>1,862</td>
<td>5,269</td>
<td>△ 3,407</td>
</tr>
<tr>
<td>特定資産取得利益</td>
<td>1,862</td>
<td>5,269</td>
<td>△ 3,407</td>
</tr>
<tr>
<td>② 受取人会金</td>
<td>148,000</td>
<td>510,000</td>
<td>△ 362,000</td>
</tr>
<tr>
<td>正会員受取人会金</td>
<td>83,000</td>
<td>140,000</td>
<td>△ 57,000</td>
</tr>
<tr>
<td>学生会員受取人会金</td>
<td>65,000</td>
<td>370,000</td>
<td>△ 305,000</td>
</tr>
<tr>
<td>③ 受取会費</td>
<td>42,182,800</td>
<td>43,210,000</td>
<td>△ 1,027,200</td>
</tr>
<tr>
<td>正会員受取会費</td>
<td>30,090,000</td>
<td>30,330,000</td>
<td>△ 240,000</td>
</tr>
<tr>
<td>学生会員受取会費</td>
<td>3,612,800</td>
<td>4,400,000</td>
<td>△ 787,200</td>
</tr>
<tr>
<td>④ 受取補助金等</td>
<td>0</td>
<td>2,483,500</td>
<td>△ 2,483,500</td>
</tr>
<tr>
<td>⑤ 雑収益</td>
<td>13,804,671</td>
<td>3,343,558</td>
<td>10,461,113</td>
</tr>
<tr>
<td>受取利息</td>
<td>11,761</td>
<td>32,815</td>
<td>△ 21,054</td>
</tr>
<tr>
<td>雑収益</td>
<td>13,792,910</td>
<td>3,310,743</td>
<td>10,482,167</td>
</tr>
<tr>
<td>経常収益計</td>
<td>59,423,023</td>
<td>92,827,691</td>
<td>△ 33,404,668</td>
</tr>
<tr>
<td>(2) 経常費用</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 事業費</td>
<td>64,016,094</td>
<td>66,897,976</td>
<td>△ 2,881,882</td>
</tr>
<tr>
<td>給料手当</td>
<td>9,124,896</td>
<td>9,014,861</td>
<td>110,035</td>
</tr>
<tr>
<td>② 管理費</td>
<td>30,404,148</td>
<td>32,425,606</td>
<td>△ 2,021,458</td>
</tr>
<tr>
<td>交通費</td>
<td>2,924,519</td>
<td>2,415,494</td>
<td>509,025</td>
</tr>
</tbody>
</table>

税引前当期一般正味財産増減額：5,296,781
法人税, 住民税及び事業税：70,000
当期一般正味財産増減額：5,226,781
正味財産期末残高：213,725,257
正味財産期末残高：213,725,257

正味財産期末残高：213,725,257

日本ロボット学会誌 36巻4号 一お知らせ45一 2018年5月
正味財産増減計算書内訳表

平成29年1月1日から平成29年12月31日まで

No. 1

<table>
<thead>
<tr>
<th>科 目</th>
<th>実 施 事 業 等 会 計</th>
<th>（単位：円）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>継1</td>
<td>継2</td>
</tr>
</tbody>
</table>

Ⅰ 一般正味財産増減の部

1. 経常増減の部

(1) 経常収益

- 特定資産運用益: 00000000
- 特定資産受取利益: 00000000
- 受取入会金: 00000000
- 正会員受取入会金: 00000000
- 学生会員受取入会金: 00000000
- 受取会費: 00000000
- 正会員受取会費: 00000000
- 学生会員受取会費: 00000000
- 賛助会員受取会費: 00000000
- 調査・研究: 013,608,972
- 申込金事業収益: 01,840,218
- 参加費事業収益: 01,840,218
- 懇親会参加費事業収益: 01,840,218
- 展示料事業収益: 01,840,218
- 講演概要集広告料事業収益: 7,817,040
- セミナー参加費事業収益: 7,817,040
- 会誌掲載料事業収益: 4,364,280
- 会誌広告料事業収益: 4,364,280
- 会誌頒布事業収益: 1,427,652
- 編集料事業収益: 1,427,652
- 受取補助金等: 00000000
- 受取国庫補助金: 00000000
- 受取地方公共団体補助金: 00000000
- 受取地方公共団体助成金: 00000000
- 受取寄付金: 00000000
- 雑収益: 00000000
- 受取利息: 00000000
- 雑収益: 00000000
- 経常収益計: 13,608,972

(2) 経常費用

- 事業費: 1,448,093
- 給料手当: 25,399,223
- 臨時雇賃金: 10,413,841
- 退職給付費用: 1,342,743
- 福利厚生費: 7,291,083
- 旅費交通費: 1,840,218
- 通信運搬費: 46,810,463
- 消耗什器備品費: 0
- 消耗品費: 0
- 印刷製本費: 0
- 光熱水料費: 0
- 給料手当: 0
- 臨時雇賃金: 0
- 退職給付費用: 0
- 福利厚生費: 0
- 会議費: 0
- 旅行交通費: 0
- 通信運搬費: 0
- 消耗什器備品費: 0
- 消耗品費: 0
- 印刷製本費: 0
- 光熱水料費: 0
- 給料手当: 0
- 臨時雇賃金: 0
- 退職給付費用: 0
- 福利厚生費: 0
- 会議費: 0

評価損益等調整前

- 当期経常増減額: -1,448,093

総計

- 経常収益計: 0
- 経常費用計: 0
- 経常費用計: 1,448,093
- 経常外収益計: 0
- 経常外費用計: 0
- 経常外費用計: 0
- 経常外収益計: 0
- 経常外費用計: 0
- 経常外費用計: 0
- 経常外収益計: 0

他会計振替額

- 他会計振替額: 1,448,093

税引前当期一般正味財産増減額

- 税引前当期一般正味財産増減額: 0

当期一般正味財産増減額

- 当期一般正味財産増減額: 0

Ⅱ 指定正味財産増減の部

- 当期指定正味財産増減額: 0

Ⅲ 正味財産期末残高

- 正味財産期末残高: 0
正味財産増減計算書内訳表

平成29年1月1日から平成29年12月31日まで

<table>
<thead>
<tr>
<th>科 目</th>
<th>その他会計</th>
<th>法人</th>
<th>会計 (C)</th>
<th>内部取引消去</th>
<th>合計 (A) + (B) + (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ 一般正味財産増減の部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 経常増減の部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 経常収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>特定資産運用益</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,862</td>
</tr>
<tr>
<td>特定資産受取利息</td>
<td>1,862</td>
<td>1,862</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取入会金</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>148,000</td>
</tr>
<tr>
<td>正会員受取入会金</td>
<td>83,000</td>
<td>83,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学生会員受取入会金</td>
<td>65,000</td>
<td>65,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取会費</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>42,182,800</td>
</tr>
<tr>
<td>正会員受取会費</td>
<td>30,090,000</td>
<td>30,090,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学生会員受取会費</td>
<td>3,612,800</td>
<td>3,612,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賛助会員受取会費</td>
<td>8,480,000</td>
<td>8,480,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事業収益</td>
<td>21,567,000</td>
<td>6,269,500</td>
<td>0</td>
<td>27,836,500</td>
<td>0</td>
</tr>
<tr>
<td>申込金事業収益</td>
<td>15,474,000</td>
<td>15,474,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>参加費事業収益</td>
<td>1,704,000</td>
<td>1,704,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>展示料事業収益</td>
<td>4,192,000</td>
<td>4,192,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>講演概要集広告費事業収益</td>
<td>197,000</td>
<td>197,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セミナー参加費事業収益</td>
<td>6,269,500</td>
<td>6,269,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>会誌掲載料事業収益</td>
<td>7,817,040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>会誌広告料事業収益</td>
<td>4,364,280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>会誌頒布事業収益</td>
<td>1,427,652</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>編集料事業収益</td>
<td>1,840,218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取補助金等</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>受取国庫補助金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取地方公共団体補助金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取地方公共団体助成金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取寄付金</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>雑収益</td>
<td>13,804,671</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取利息</td>
<td>11,761</td>
<td>11,761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑収益計</td>
<td>13,792,910</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>経常収益計</td>
<td>21,567,000</td>
<td>6,269,500</td>
<td>0</td>
<td>27,836,500</td>
<td>56,137,333</td>
</tr>
<tr>
<td>② 経常費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>給料手当</td>
<td>9,124,896</td>
<td>9,124,896</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>旅費交通費</td>
<td>160,596</td>
<td>160,596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信運搬費</td>
<td>522,339</td>
<td>522,339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消耗什器備品費</td>
<td>528,810</td>
<td>528,810</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消耗品費</td>
<td>419,916</td>
<td>419,916</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>印刷製本費</td>
<td>784,315</td>
<td>784,315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光熱水料費</td>
<td>378,507</td>
<td>378,507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賃借料</td>
<td>7,025,016</td>
<td>7,025,016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>諸謝金</td>
<td>1,100,628</td>
<td>1,100,628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>租税公課</td>
<td>51,300</td>
<td>51,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>支払手数料</td>
<td>2,555,073</td>
<td>2,555,073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>会議費</td>
<td>160,596</td>
<td>160,596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>旅費交通費</td>
<td>522,339</td>
<td>522,339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信運搬費</td>
<td>746,917</td>
<td>746,917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消耗什器備品費</td>
<td>528,810</td>
<td>528,810</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消耗品費</td>
<td>419,916</td>
<td>419,916</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>印刷製本費</td>
<td>784,315</td>
<td>784,315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光熱水料費</td>
<td>378,507</td>
<td>378,507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賃借料</td>
<td>7,025,016</td>
<td>7,025,016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保険料</td>
<td>60,000</td>
<td>60,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>委託費</td>
<td>2,555,073</td>
<td>2,555,073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑費</td>
<td>1,322,567</td>
<td>1,322,567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>経常費用計</td>
<td>12,661,825</td>
<td>4,543,806</td>
<td>0</td>
<td>17,205,631</td>
<td>30,040,148</td>
</tr>
<tr>
<td>③ 評価損益等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>評価損益等計</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>当期経常増減額</td>
<td>8,905,175</td>
<td>1,725,694</td>
<td>0</td>
<td>10,630,869</td>
<td>26,097,185</td>
</tr>
<tr>
<td>当期経常外増減額</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>当期経常増減額</td>
<td>8,905,175</td>
<td>1,725,694</td>
<td>0</td>
<td>10,630,869</td>
<td>26,097,185</td>
</tr>
<tr>
<td>Ⅱ 指定正味財産増減の部</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>当期指定正味財産増減額</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>指定正味財産期首残高</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>指定正味財産期末残高</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ⅲ 正味財産期末残高</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

（単位：円）
財務諸表に対する注記

1. 重要な会計方針
 (1) 引当金の計上基準
 退職給付引当金は、期末退職給与の要支給額に相当する金額を計上している。
 (2) 消費税等の会計処理
 消費税等の会計処理は、税込み方式によってている。

2. 特定資産の増減額及びその残高
 特定資産の増減額及びその残高は、次のとおりである。
 （単位：円）
<table>
<thead>
<tr>
<th>科 目</th>
<th>前期末残高</th>
<th>当期増加額</th>
<th>当期減少額</th>
<th>当期末残高</th>
</tr>
</thead>
<tbody>
<tr>
<td>特 定 資 産</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>退職給付引当資産</td>
<td>10,071,262</td>
<td>1,053,951</td>
<td>0</td>
<td>11,125,213</td>
</tr>
<tr>
<td>定 期 預 金</td>
<td>21,000,000</td>
<td>0</td>
<td>0</td>
<td>21,000,000</td>
</tr>
<tr>
<td>合 計</td>
<td>31,071,262</td>
<td>1,053,951</td>
<td>0</td>
<td>32,125,213</td>
</tr>
</tbody>
</table>

3. 特定資産の財源等の内訳
 特定資産の財源等の内訳は、次のとおりである。
 （単位：円）
<table>
<thead>
<tr>
<th>科 目</th>
<th>当期末残高</th>
<th>（うち指定正規財産からの充当額）</th>
<th>（うち一般正規財産からの充当額）</th>
<th>（うち負債に 対応する額）</th>
</tr>
</thead>
<tbody>
<tr>
<td>特 定 資 産</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>退職給付引当資産</td>
<td>11,125,213</td>
<td>-</td>
<td>(0)</td>
<td>(11,125,213)</td>
</tr>
<tr>
<td>定 期 預 金</td>
<td>21,000,000</td>
<td>(0)</td>
<td>(21,000,000)</td>
<td>-</td>
</tr>
<tr>
<td>合 計</td>
<td>32,125,213</td>
<td>(0)</td>
<td>(21,000,000)</td>
<td>(11,125,213)</td>
</tr>
</tbody>
</table>

附属明細書

1. 特定資産の明細
 特定資産の明細については、「財務諸表に対する注記」の「2. 特定資産の増減額及びその残高」に記載のとおりである。

2. 引当金の明細
 （単位：円）
<table>
<thead>
<tr>
<th>科 目</th>
<th>期首残高</th>
<th>当期 増加額</th>
<th>当期 減少額</th>
<th>使用目的</th>
<th>その他</th>
<th>期末残高</th>
</tr>
</thead>
<tbody>
<tr>
<td>退職給付引当金</td>
<td>10,071,262</td>
<td>1,053,951</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11,125,213</td>
</tr>
</tbody>
</table>
財産目録
平成29年12月31日現在
（単位：円）

<table>
<thead>
<tr>
<th>科目</th>
<th>金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ 流動資産</td>
<td></td>
</tr>
<tr>
<td>現金預金</td>
<td></td>
</tr>
<tr>
<td>現金</td>
<td>3,123,652</td>
</tr>
<tr>
<td>普通預金 三菱東京 UFJ 銀行本店</td>
<td>20,032,908</td>
</tr>
<tr>
<td>普通預金 三菱東京 UFJ 銀行本店</td>
<td>17,458,419</td>
</tr>
<tr>
<td>普通預金 三菱東京 UFJ 銀行本店</td>
<td>255,828</td>
</tr>
<tr>
<td>普通預金 三菱東京 UFJ 銀行本店</td>
<td>10,234,486</td>
</tr>
<tr>
<td>普通預金 三菱東京 UFJ 銀行本店</td>
<td>11,250,586</td>
</tr>
<tr>
<td>定期預金 三菱東京 UFJ 銀行本店</td>
<td>55,278,476</td>
</tr>
<tr>
<td>定期預金 三菱東京 UFJ 銀行本店</td>
<td>60,123,421</td>
</tr>
<tr>
<td>定期預金 三菱東京 UFJ 銀行本店</td>
<td>18,067,090</td>
</tr>
<tr>
<td>通常貯金 ゆうちょ銀行</td>
<td>18,273,585</td>
</tr>
<tr>
<td>通常貯金 ゆうちょ銀行</td>
<td>989,505</td>
</tr>
<tr>
<td>未収会費 平成29年度会費 322名, 2口</td>
<td>2,314,800</td>
</tr>
<tr>
<td>未収金 学会誌投稿料・広告料他</td>
<td>1,951,488</td>
</tr>
<tr>
<td>前払金 平成30年1月分事務所家賃他</td>
<td>531,164</td>
</tr>
<tr>
<td>前払金 税理士顧問料他</td>
<td>35,640</td>
</tr>
<tr>
<td>前払金 IROS 2017 Advanced Loan他</td>
<td>1,980,220</td>
</tr>
<tr>
<td>流動資産合計</td>
<td>221,901,268</td>
</tr>
<tr>
<td>Ⅱ 固定資産</td>
<td></td>
</tr>
<tr>
<td>（1） 特定資産</td>
<td></td>
</tr>
<tr>
<td>退職給付引当資産（普通預金） 三菱東京 UFJ 銀行春日町支店</td>
<td>11,125,213</td>
</tr>
<tr>
<td>退職給付引当資産（普通預金） 三菱東京 UFJ 銀行春日町支店</td>
<td>21,000,000</td>
</tr>
<tr>
<td>特定資産合計</td>
<td>32,125,213</td>
</tr>
<tr>
<td>（2） その他固定資産</td>
<td></td>
</tr>
<tr>
<td>電話加入権 2本</td>
<td>153,100</td>
</tr>
<tr>
<td>保証金 賃貸借契約保証金</td>
<td>63,000</td>
</tr>
<tr>
<td>保証金 賃貸借契約保証金</td>
<td>2,500,000</td>
</tr>
<tr>
<td>その他固定資産合計</td>
<td>2,716,100</td>
</tr>
<tr>
<td>固定資産合計</td>
<td>34,841,313</td>
</tr>
<tr>
<td>資産合計</td>
<td>256,742,581</td>
</tr>
<tr>
<td>Ⅲ 負債の部</td>
<td></td>
</tr>
<tr>
<td>Ⅰ 流動負債</td>
<td></td>
</tr>
<tr>
<td>未払金 印刷・封入・郵送費（日本ロボット学会誌35-10）</td>
<td>1,487,465</td>
</tr>
<tr>
<td>未払金 コピー機使用料</td>
<td>153,156</td>
</tr>
<tr>
<td>未払金 人材派遣費 12月分</td>
<td>193,094</td>
</tr>
<tr>
<td>未払金 交通費（事業計画委員会関係他）</td>
<td>254,523</td>
</tr>
<tr>
<td>未払金 平成29年度J-STAGE投稿審査システム利用料</td>
<td>97,200</td>
</tr>
<tr>
<td>未払金 税理士顧問料他</td>
<td>138,466</td>
</tr>
<tr>
<td>未払法人税等 平成29年分法人税</td>
<td>70,000</td>
</tr>
<tr>
<td>流動負債合計</td>
<td>26,595,330</td>
</tr>
<tr>
<td>Ⅱ 固定負債</td>
<td></td>
</tr>
<tr>
<td>退職給付引当金</td>
<td>11,125,213</td>
</tr>
<tr>
<td>固定負債合計</td>
<td>11,125,213</td>
</tr>
<tr>
<td>負債合計</td>
<td>37,720,543</td>
</tr>
<tr>
<td>正味財産</td>
<td>219,022,038</td>
</tr>
</tbody>
</table>
監査報告

私たち監事は、平成29年1月1日から平成29年12月31日までの第七期事業年度の理事の職務の執行を監査いたしました。その方法及び結果につき以下のとおり報告いたします。

１．監査の方法及びその内容
各監事は、理事及び使用人等と意思疎通を図り、情報の収集及び監査の環境の整備に努めるとともに、理事会その他重要な会議に出席し、理事及び使用人等からその職務の執行状況について報告を受け、必要に応じて説明を求め、重要な決裁書類等を閲覧し、主要な事業所において業務及び財産の状況を調査いたしました。以上の方法に基づき、当該事業年度に係る事業報告及びその附属明細書について検討いたしました。

さらに、会計帳簿又はこれに関する資料の調査を行い、当該事業年度に係る財務諸表等及びその附属明細書について検討いたしました。

２．監査の結果
（1）事業報告等の監査結果
一 事業報告及びその附属明細書は、法令及び定款に従い、法人の状況を正しく示しているものと認めます。
二 理事の職務の執行に関する不正の行為又は法令もしくは定款に違反する重大な事実は認められません。
（2）財務諸表等及びその附属明細書の監査結果
財務諸表等及びその附属明細書は、法人の財産及び損益の状況をすべての重要な点において適正に表示しているものと認めます。

平成30年2月15日
一般社団法人日本ロボット学会

監 事 大隅 久 ㊞
監 事 髙西 淳夫 ㊞

公益目的支出計画実施報告書に関する監査報告

私たち監事は、平成29年1月1日から平成29年12月31日までの第七期事業年度の公益目的支出計画実施報告書について監査いたしました。その方法及び結果につき以下のとおり報告いたします。

１．監査の方法及びその内容
会計帳簿又はこれに関する資料、公益目的支出計画に関する資料の調査を行い、当該事業年度に係る公益目的支出計画実施報告書について検討いたしました。

２．監査の結果
公益目的支出計画実施報告書は、法令等に従い、適切に作成されていると認めます。

平成30年2月15日
一般社団法人日本ロボット学会

監 事 大隅 久 ㊞
監 事 髙西 淳夫 ㊞
シンポジウム（継続事業 1）
ロボット教育セミナー
ロボット教育セミナー「子供向けからくり教室（仮）」
期日：2018年7月（予定）
オーガナイザ：古茂田和馬（東芝）

オープンフォーラム
第36回学術講演会（中部大学、2018年9月5日〜8日）にて、オープンフォーラム（無料、一般公開）を企画予定。

インタラクションロボットハブスケール IR2018
2018年10月に東京ビッグサイトにて、World Robot Summitプレ大会、Japan Robot Week 2018とのクロスで、IR2018の実施を予定。

学会誌（継続事業 2）（定款第4条2号）
第36巻1号より10号を、1月、3月、4月、5月、6月、7月、9月、10月、11月、12月に刊行し、会員に配布する。各号の特集テーマは以下の通り。

第36巻1号 サステナブルを目指すロボティクス（仮）
第36巻2号 ヒューマノイド・ロボティクス 2016夏の学校（仮）
第36巻3号 超音波で「視る」「動かす」「治す」そして「触れる」（仮）
第36巻4号 マニピュレーションレビュー（仮）
第36巻5号 原子力発電所事故対応ロボットの現状I（仮）
第36巻6号 原子力発電所事故対応ロボットの現状II（仮）
第36巻7号 第35回学術講演会論文特集号
第36巻8号 開かれた知能（仮）
第36巻9号 テレイグジスタンス（仮）
第36巻10号 ソフトロボティクス（仮）

前年度に引き続き、魅力的な特集号の企画などについて取り組む。
また、学術講演会論文特集号に加えて、ロボット基礎レクチャーシリーズを企画する。一般記事に関しては、会議報告、コラム記事、工場訪問、研究者・開発者インタビュー記事などの掲載を継続して行う。
論文投稿の減少改善策としては、2014年4月から導入された新たな査読システムの改革が投稿数の増加、採択率の増加に貢献するかどうか、4年経過した段階での中間評価・検討を行う。
また、二重投稿のルールの策定と、論文の種類のうち「研究速報」廃止、「レター」新設により、論文執筆者の立場から見た会誌に投稿するメリットや魅力を増強する。具体的には、著者の不安の解消を図るために、整備・明確化した二重投稿のルールの周知、新設したレターにより査読の迅速化を目指す。

広告に関しては、収入目標を400万円と設定し、特集に関連した企業広告の獲得など目標達成に向けた具体的取り組みを行う。
中期的ビジョンとしては、和文（論文）誌のあり方について、学会の発展・会員サービスの質の向上を優先して改善策を検討して行く。
とえば、ロボット関連の商業雑誌（ロボコンマガジンなど）との連携解説、インタネットメディア（例えばYouTubeなど）とリンクした解説、論文のクロスリンクの評価とフィードバック、教育論文、企業論文、解説論文、アイディア論文など、新しい領域を開拓、などを検討し、ロボット研究のすそ野を広げて行く。

長期的ビジョンとしては、和文誌の投稿料の見直しやオープンジャーナル化など切った改革の可能性についてもあわせて議論を重ねる。

欧文誌（継続事業 3）（定款第4条4号）

欧文誌（Advanced Robotics）の発行計画

下記の通り、2018年度においてはVol.32を年24号発行することを計画している。

Vol. No. Month Title
32/1, 2 Jan New Horizons in Telerobotics for Real-Life Application
32/3, 4 Feb Morphological Computation in Soft Robotics
32/5, 6 Mar Regular Issue
32/7, 8 Apr New Hydraulic Components for Tough Robots
32/9, 10 May Regular Issue
32/11, 12 Jun Regular Issue
32/13, 14 Jul Regular Issue
32/15, 16 Aug Innovative Drone Technology
32/17, 18 Sep Adaptive Motion of Animals and Machines
32/19, 20 Oct Regular Issue
32/21, 22 Nov Morphological Design for Haptic Interaction and Perception
32/23, 24 Dec Regular Issue

編集体制
2018年度は、細田耕編集長の下、シンガエディター7名および9名の欧文誌委員会メンバーを中心に、学術委員会、編集委員会、アドバイザリー委員会のメンバーの協力を得ながら、欧文誌Advanced Roboticsの国際的な認知度を高める。さらに日本ロボット学会と日本のロボット分野全体の国際的地位向上に貢献していく。

欧文誌の内容向上と読者数増加に向けて
2014年度から年間24号とし、一般論文の査読・出版サイクルに大幅な改善が図られているが、今後も採択決定までの期間90日を目標に出版を行っていく。一般論文の投稿数を見ながら、積極的かつ戦略的な特集号企画を行い、国際的な認知度のさらなる向上、また引数の多い論文数件をOpen Access可能なものを等を実施し、掲載論文の質の向上を図り、昨年度上昇したCitation Indexの評価（インパクトファクター）の更なる向上を目指す。
また、国際貢献の意味も含め、国内からの投稿数をさらに増大させていくための施策として、投稿料無料を堅持する。

国際化に向けての活動
主要な国際会議IROSにあわせて国際編集委員会を開催し、海外委員による特集号企画などを通じて、国際的認知度を高める努力を行っていく。また、国際化のために、ロボット学会の外国会員の増加、日本の優れた研究の世界的発信などを引き続き積極的に進めていく。また、国際委員会の活動に協力し、他学会との協力体制強化、パンフレットの国際会議場での配布、AR宣伝のためのポスターの制作と配布、ウェブの英語コンテンツ充実、等を実施する。

調査・研究（継続事業 4）（定款第4条3号）

調査・研究専門委員会活動
以下の調査研究委員会、研究専門委員会による活動を行う。
（1）調査専門委員会

委員会名 委員長 発足 種別
遊びとロボット研究専門委員会 橋本秀紀 2017年4月 I種
ロボット学習研究専門委員会 上出寛子 2017年4月 I種
ヒューマノイド・ロボティクス研究専門委員会 杉原知道 2017年4月 I種
ソフトロボティクス研究専門委員会 新山龍馬 2017年4月 I種
開かれた知能研究専門委員会 下田真吾 2014年9月 I種
データ工学ロボティクス研究専門委員会 岡田浩之 2014年8月 II種
福祉科学研究専門委員会 下原英明 2014年4月 II種
関西ロボット系若手研究者ネットワーク研究専門委員会 成田雅彦 2010年3月 I種
ヒューマンセンサトリックロボティクス研究専門委員会 池田篤俊 2009年4月 I種
ヒューマンセントリックロボティクス研究専門委員会 槇田 賢 2009年4月 I種
北海道ロボット技術研究専門委員会 近野 敦 2008年4月 I種

（2）研究専門委員会

委員会名 委員長 発足 種別
遊びとロボット研究専門委員会 佛秀秀紀 2017年4月 I種
ロボット学習研究専門委員会 上出寛子 2017年4月 I種
ヒューマノイド・ロボティクス研究専門委員会 杉原知道 2017年4月 I種
ソフトロボティクス研究専門委員会 新山龍馬 2017年4月 I種
開かれた知能研究専門委員会 下田真吾 2014年9月 I種
データ工学ロボティクス研究専門委員会 岡田浩之 2014年8月 II種
福祉科学研究専門委員会 下原英明 2014年4月 II種
関西ロボット系若手研究者ネットワーク研究専門委員会 成田雅彦 2010年3月 I種
ヒューマンセンサトリックロボティクス研究専門委員会 池田篤俊 2009年4月 I種
ヒューマンセントリックロボティクス研究専門委員会 槇田 賢 2009年4月 I種
北海道ロボット技術研究専門委員会 近野 敦 2008年4月 I種

空関知能化研究専門委員会（2018年1月よりロボティクスにおける空間の知能化及び構成化に関する研究専門委員会）から変更）

新妻英子 2007年1月 II種
（２）調査研究委員会

<table>
<thead>
<tr>
<th>委員会名</th>
<th>委員長</th>
<th>発足</th>
</tr>
</thead>
<tbody>
<tr>
<td>廃炉に向けたロボットの調査研究と社会貢献に関する調査研究委員会</td>
<td>吉見 卓</td>
<td>2015年1月</td>
</tr>
<tr>
<td>産学連携調査研究委員会</td>
<td>小平紀生</td>
<td>2013年5月</td>
</tr>
<tr>
<td>実用化調査研究委員会</td>
<td>未定</td>
<td>2013年1月</td>
</tr>
</tbody>
</table>

（３）技術・カテゴリー別委員会

<table>
<thead>
<tr>
<th>委員会名</th>
<th>委員長</th>
<th>発足</th>
</tr>
</thead>
<tbody>
<tr>
<td>ロボット教育事業計画委員会</td>
<td>嗲仏信哉</td>
<td>2015年4月</td>
</tr>
<tr>
<td>建設ロボット委員会</td>
<td>林栖正充</td>
<td>2013年10月</td>
</tr>
</tbody>
</table>

Ⅴ. 表彰（継続事業5）[担当：企画理事] (定款第4条4号)

1. 表彰

第36回学術講演会において学会誌論文賞, Advanced Robotics Best Paper Award, 実用化技術賞, 研究奨励賞, ロボティクスシンポジウム研究奨励賞, 動力およびロボット活用社会貢献賞の授賞を行う。また、今年度以降もFA財団の論文賞への推薦, 財団法人東レ科学振興会の東レ科学技術賞および東レ科学技術研究助成の推薦を行う。学会員やロボット分野の発展にとって有益と思う其他の外部団体からの各賞の推薦依頼についても積極的に対応していく。

Ⅵ. 国際（継続事業6）[担当：国際理事] (定款第4条5号)

1. 学術講演会における国際セッション

第36回日本ロボット学会学術講演会(中部大学春日井キャンパス)において, OS国際セッションを組織する。発表者には, 参加登録費を課すが, 登壇資格は問わない。

2. 国際交流活動

（1）ARSU サミット会議の継続的な参加(第13回)
（2）ARSU サミット会議への未参加のアジア諸国の勧誘
（3）ARSU サミット会議の情報公開の推進

Ⅶ. 学術講演会(その他事業1) [担当：学術講演会理事] (定款第4条1号)

1. 学術講演会・シンポジウム等

（1）第36回学術講演会

期 日: 2018年9月5日（水）～8日（土）
会 場: 中部大学（春日井キャンパス, 愛知県春日井市）
実行委員長: 大日方五郎（中部大学）
プログラム委員長: 下川真吾（理化学研究所）

（2）ロボット工学セミナー開催予定(タイトルはすべて仮)

（3）ロボット工学セミナー「フィールドで活躍するロボット技術」

期 日: 2018年10月10日（定）
オーガナイザ: 小林亮介（日立製作所）

2. 共催・協賛等

本会に関連する国内行事の共催・協賛・後援について審査を行う。
国内共催事業（予定を含む）:

（1）第23回ロボティクスシンポジウム

期 日: 2018年3月14日（水）～15日（木）
会 場: 原爆資料館 松尾館（静岡県焼津市）
実行委員長: 河村真也（筑波大学）
プログラム委員長: 長谷川良（筑波大学）
実行委員長: 松村和広（筑波大学）

（2）ロボットコンテスト・フェスティバル2018

期 日: 未定
開 催 地: 未定

（3）知能ロボットコンテスト・フェスティバル2018

期 日: 未定
開 催 地: 未定

（4）第18回レスキューロボットコンテスト

期 日: 未定
開 催 地: 未定

Ⅸ. 法人処理[担当: 庶務理事]

1. 第18回定時総会

期 日: 平成30年3月23日（定）
会 場: 全水道会館（定）

2. 委員会活動

下記の委員会を開催する。
委員会名	委員長（1月～3月）	委員長（3月～12月）
会誌編集委員会 | 山下淳 | 正宗賢
欧文誌委員会 | 望山洋 | 原田研介
事業計画委員会 | 山野辺夏樹 | 大原賢一
国際委員会 | 柴田智広 | 中澤一博
研究協議会 | 松山信人 | 松山信人
学術講演会実行委員会 | 松元明弘 | 大日方五郎
表彰委員会 | 浅田稔 | 浅田稔
学会誌編集委員会 | 山下淳 | 正宗賢
欧文誌委員会 | 望山洋 | 原田研介
事業計画委員会 | 山野辺夏樹 | 大原賢一
国際委員会 | 柴田智広 | 中澤一博
研究協議会 | 松山信人 | 松山信人
学術講演会実行委員会 | 松元明弘 | 大日方五郎
表彰委員会 | 浅田稔 | 浅田稔
学会誌編集委員会 | 山下淳 | 正宗賢
欧文誌委員会 | 望山洋 | 原田研介
理事長 | (3月～12月予定)
会長 | (1月～3月)

3. 役員の選出
平成30年度の理事・監事を選出する。

4. フェロー、名誉会員の選任
フェロー、名誉会員の推薦を行い選任する。

5. 学会の基盤強化
新規委員会体制の下に、会員の拡大、論文発表の活性化をめざし、広報活動、産業連携・異業種連携活動の強化、学会誌の充実を通じて、学会の知名度向上をはかる。また、非専門家が入会しやすいしくみの構築や有志活動、高齢者層会員、学生会員が会員継続することの創出、若年層への啓発活動を継続実施する。

6. 学会サービスの向上
学会価値委員会、ロボット研開アーカイブ実行委員会にて、学会ホームページのコンテンツの充実、情報サービスの拡大を進め、会員サービスの質の向上を図るとともに、学会の社会的価値の向上をはかる。

7. 規約等の制定・整備
体制整備委員会、コンプライアンス委員会にて、学会運営の効率化・適正化、学会の利便性向上に必要な規約等の制定・整備を適宜実施していく。

8. 将来検討
学会価値委員会等の活動により、本学会の将来展開に向けた方針や制度等に関する検討およびその具体化に取り組む。

9. 事務局運営
体制整備委員会の指導の下、中長期的な観点に立って事務局体制について検討・整備する。

【報告資料2】
平成30年度予算計画
収支予算書(損益ベース) 平成30年1月1日～平成30年12月31日（公益事業）

科 目
実施事業等会計
継1
シンポジウム
継2
学会誌
継3
欧文誌
継4
調査・研究
継5
表彰
継6
国際 共通 小計(A)

Ⅰ 一般正味財産増減の部
(1)経常増減の部
経常収益
特定資産運用益 0
特定資産受取利息 0
受取入会金 0
正会員受取入会金 0
学生会員受取入会金 0
受取会費 0
正会員受取会費 0
学生会員受取会費 0
賛助会員受取会費 0
申込金事業収益 0
参加費事業収益 0
参加費事業収益 0
会費事業収益 0
事業収益 0 16,262,000 2,100,000 0 0 0 0 16,262,000

経常費用
事業費 2,080,000 27,025,140 7,384,000 1,157,000 7,882,970 2,655,000 0 48,184,110
給料手当 0 5,219,390 0 0 4,019,970 0 0 9,239,360
臨時雇賃金 320,000 37,000 0 50,000 407,000
退職給付費用 0 447,950 0 0 316,200 0 0 764,150
福利厚生費 0 1,009,800 0 0 712,800 0 0 1,722,600
旅費交通費 47,000 353,000 2,000 10,000 213,000 750,000 1,375,000
通信運搬費 200,000 3,650,000 200,000 34,000 91,000 24,000 4,199,000
消耗什器備品費 119,000 119,000
消耗品費 280,000 19,000 26,000 16,000 338,000 12,000 691,000
印刷製本費 120,000 13,987,000 10,000 20,000 14,137,000
賃借料 338,000 99,000 24,000 461,000
諸謝金 340,000 680,000 500,000 1,520,000
租税公課 438,000 8,000 446,000
支払負担金 345,000 3,733,000 160,000 23,000 4,261,000
委託費 50,000 1,664,000 3,296,000 382,000 719,000 6,111,000
雑費 40,000 200,000 98,000 1,743,000 650,000 2,731,000
管理費 0
給料手当 0
臨時雇賃金 0
退職給付費用 0
福利厚生費 0

経常収益計 0 16,262,000 21000000 0 0 0 0 16,262,000

(2)経常費用
事業費 2,080,000 27,025,140 7,384,000 1,157,000 7,882,970 2,655,000 0 48,184,110
給料手当 0 5,219,390 0 0 4,019,970 0 0 9,239,360
臨時雇賃金 320,000 37,000 0 50,000 407,000
退職給付費用 0 447,950 0 0 316,200 0 0 764,150
福利厚生費 0 1,009,800 0 0 712,800 0 0 1,722,600
旅費交通費 47,000 353,000 2,000 10,000 213,000 750,000 1,375,000
通信運搬費 200,000 3,650,000 200,000 34,000 91,000 24,000 4,199,000
消耗什器備品費 119,000 119,000
消耗品費 280,000 19,000 26,000 16,000 338,000 12,000 691,000
印刷製本費 120,000 13,987,000 10,000 20,000 14,137,000
賃借料 338,000 99,000 24,000 461,000
諸謝金 340,000 680,000 500,000 1,520,000
租税公課 438,000 8,000 446,000
支払負担金 345,000 3,733,000 160,000 23,000 4,261,000
委託費 50,000 1,664,000 3,296,000 382,000 719,000 6,111,000
雑費 40,000 200,000 98,000 1,743,000 650,000 2,731,000
管理費 0
収益・支出予算書（損益ベース）
平成30年1月1日～平成30年12月31日（その他事業）

<table>
<thead>
<tr>
<th>科 目</th>
<th>特1 学術講演会</th>
<th>特2 講習会</th>
<th>共通</th>
<th>小計</th>
<th>(A)</th>
<th>(B) + (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部取引消去</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 経常収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>特定資産運用益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>特定資産売却益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取入会金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正会員受取入会金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学生会員受取入会金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>取得会計費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正会員会議費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学生会員会議費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>資料技術会費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事業収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取補助金等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取国庫補助金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取地方公共団体補助金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光熱水料費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賃借料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保険料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>支払手数料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>清算金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賃借金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>租税公課</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>委託費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

経常費用計

<table>
<thead>
<tr>
<th>科 目</th>
<th>特1 学術講演会</th>
<th>特2 講習会</th>
<th>共通</th>
<th>小計</th>
<th>(A)</th>
<th>(B) + (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部取引消去</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 経常費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>社会福祉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>給料手当</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>退職給付費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>福利厚生費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事業費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事業投資</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取補助金等</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取国庫補助金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受取地方公共団体補助金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賃借料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保険料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>支払手数料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>清算金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>賃借金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>租税公課</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>委託費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雑費</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

営業外増減の部

<table>
<thead>
<tr>
<th>科 目</th>
<th>特1 学術講演会</th>
<th>特2 講習会</th>
<th>共通</th>
<th>小計</th>
<th>(A)</th>
<th>(B) + (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部取引消去</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 経常外収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>② 経常外費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

営業外収益計

営業外費用計

当期経常外増減額

他会計振替額

税引前当期一般正味財産増減額

<table>
<thead>
<tr>
<th>科 目</th>
<th>特1 学術講演会</th>
<th>特2 講習会</th>
<th>共通</th>
<th>小計</th>
<th>(A)</th>
<th>(B) + (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部取引消去</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① 経常収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>② 経常費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>営業外収益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>営業外費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

営業外調整前

当期経常増減額

当期一般正味財産増減額
【第3号議案】

平成30年度役員の件

日本ロボット学会定款第5章、役員選任規程および役員候補推薦規程に従い、下表右列の9名を平成30年度新役員として推挙したい。

<table>
<thead>
<tr>
<th>任期</th>
<th>平成28年3月～</th>
<th>平成29年3月～</th>
<th>平成30年3月～</th>
<th>平成31年3月～</th>
<th>平成32年3月～</th>
</tr>
</thead>
<tbody>
<tr>
<td>理事</td>
<td>泽 俊裕</td>
<td>浅田 秀人</td>
<td>松日楽信人</td>
<td>松村 槙人</td>
<td>冨田浩治</td>
</tr>
<tr>
<td>理事</td>
<td>高西淳夫</td>
<td>吉見 卓</td>
<td>望山 洋</td>
<td>原田研介</td>
<td>木村 俊央</td>
</tr>
<tr>
<td>理事</td>
<td>柴田智広</td>
<td>中島一博</td>
<td>松元明弘</td>
<td>松元明弘</td>
<td>中島一博</td>
</tr>
<tr>
<td>監事</td>
<td>大隅 久</td>
<td>高西淳夫</td>
<td>吉見 卓</td>
<td>吉見 卓</td>
<td>藤野 定弘</td>
</tr>
</tbody>
</table>

【第4号議案】

名誉会員推挙の件

日本ロボット学会、名誉会員選任規程第2項（会長経験者、および、その他、ロボットの学術または技術に関する権威者で、かつ本会に対し功績顕著な者）に従い、下記の3名を新しく名誉会員として推挙したい。

内山 隆 1947生 会員# 506
金出武雄 1945生 会員# 292
原島文雄 1940生 会員# 2122

なお、これに伴い、日本ロボット学会名誉会員は下記12名となる。

花房秀郎 1923生 会員# 73
森 政弘 1927生 会員# 25
梅谷昭二 1932生 会員# 41
稲葉清右衛門 1925生 会員# 1070
有本 卓 1936生 会員# 1078
江尻正員 1937生 会員# 77
三浦宏文 1938生 会員# 1023
牧野 芳 1933生 会員# 43
吉川恵夫 1941生 会員# 311
内山 隆 1947生 会員# 506
金出武雄 1945生 会員# 292
原島文雄 1940生 会員# 2122
日本ロボット学会 一般記事寄稿票

受付番号 学会受付日

寄稿種別： □投稿記事 □依頼記事[]
記事種別： □随想 □展望 □解説 □読売 □資料 □講座 □研究室紹介 □講演 □座談会
□製品紹介 □書評 □文献紹介 □博士論文紹介 □会報 □国際会議報告 □イベント報告
□最終講義報告 □Q＆A □読者の欄 □放談室 □その他

題名(和文):
(英文):

<table>
<thead>
<tr>
<th>著者名(和文)</th>
<th>所属(和文)</th>
<th>所在地(和文)</th>
<th>会員種別</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ローマ字)</td>
<td>(英文)</td>
<td>(英文)</td>
<td>正・学・非</td>
</tr>
<tr>
<td>1)</td>
<td></td>
<td></td>
<td>正・学・非</td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td></td>
<td>正・学・非</td>
</tr>
<tr>
<td>3)</td>
<td></td>
<td></td>
<td>正・学・非</td>
</tr>
<tr>
<td>4)</td>
<td></td>
<td></td>
<td>正・学・非</td>
</tr>
<tr>
<td>5)</td>
<td></td>
<td></td>
<td>正・学・非</td>
</tr>
</tbody>
</table>

【寄稿内容】 □文書原稿 _____ ページ □図 _____ 枚 □表 _____ 枚

本著作物は日本ロボット学会一般記事寄稿規程に合致するものであり、以降の取扱いについては同取扱い規程に従うことを承諾する。

代表者氏名(自署): 印

年 月 日

連絡先: 〒
所在地

所属

担当者

TEL:
FAX:
E-mail:

【原稿料振込先】 銀行名: 支店名:
口座番号(普通): 銀行口座名義人:

日本ロボット学会 論文寄稿票

受付番号

学会受付日

題名(和文):

(英文):

論文種別 □総合論文 □学術・技術論文 □解説論文 □研究速報 □討論

<table>
<thead>
<tr>
<th>著者名 (和文)</th>
<th>所属 (和文)</th>
<th>所在地 (和文)</th>
<th>会員種別</th>
<th>会員番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ローマ字)</td>
<td>(英文)</td>
<td>(英文)</td>
<td>正・学・非</td>
<td></td>
</tr>
<tr>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td></td>
<td>正・学・非</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td></td>
<td></td>
<td>正・学・非</td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td></td>
<td></td>
<td>正・学・非</td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td></td>
<td></td>
<td>正・学・非</td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td></td>
<td></td>
<td>正・学・非</td>
<td></td>
</tr>
</tbody>
</table>

内容

□文書原稿 ___ ページ □図 ___ 枚 □表 ___ 枚

本論文は日本ロボット学会論文寄稿規程に合致するものであり、以降の取扱いについては
同取扱い規程に従うことを承諾する。また、同様の内容の論文を、他の論文誌等に投稿していない
ことを確認する。

年 月 日 代表者氏名(自署) 印

連絡先：〒
所在地
所属
担当者 様

TEL:
FAX:
E-mail:
「ロボット考学」と聞くと、「ロボットのことを考える」「ロボット自身が考える」「人とロボットが共に考える」の三段階を想像してまいります。

編集後記

プラトン、アリストテレス、ソクラテスをはじめとする古代ギリシャの学者達は数学、生物学などの理系学問だけでなく、哲学や政治学などの文系学問も現代につながる業績を残しています。また、博士の称号は欧米では、Doctor of Philosophyであり、これは直訳すれば哲学博士となります。

これらの事実を踏まえると、古代の学者には今回の特集号で取り上げた工学と哲学・倫理学との関係がおありなく、貧困や不便さといった社会問題を、一方では技術的な手段で考え、他方では、政治的・倫理的な手段を同時並行して考えていたように思います。それがいつの頃からか、理系と文系が分離して、技術と哲学とが別々のフィールドで語られるようになっただけれど、歴史的な経緯の要因は誰が証明する必要があるのでしょうか。特に、技術者や哲学者の将来の姿勢を見習う必要があるのかもしれません。

今月の特集号企画を通じて、筆者自身もロボット開発の倫理観について考えさせられるとともに、勉強させていただきました。ロボット開発に携わる技術者として、このような貴重な機会を提供していただいたことに感謝します。ありがとうございました。

最後になりましたが、特集号企画にご協力いただきました電気通信大学の新井先生、名古屋大学の上出先生、執筆していただいた皆様に感謝するとともに、本特集を刊行するにあたり支援をいただいた会誌編集委員の皆様と事務局の皆様、ハイセンスな表紙デザインを製作いただきました園山様に深く御礼を申し上げます。

(神谷陽介 安川電機)
一般社団法人 日本ロボット学会 賛助会員のご紹介（50 音順）

本学会をご支援頂いている賛助会員の皆様をご紹介致します。
本学会 web サイト（http://www.rsj.or.jp/about/supporter/）にて会員の皆様の HP ヘリンクを貼らせ頂いております。

(株)IHI	(株)ナゴヤ保険化学工業社
(株)アヴィス	(株)ナブテスコ (株)／津工場
(株)アドイン研究所	(株)ナレッジ
(株)アトックス技術開発センター	NiKKi Fron (株)
育良精機 (株)	(株)日経 BP ／日経 Robotics
(株)インフィテック	日東精工 (株)
(株)エイ・ダブリュ・ソフトウェア	日本電気 (株)
(株)エクォス・リサーチ	(一社)日本品質保証機構
NTN (株)	(一社)日本ロボット工業会
(株)NTT データ／技術開発本部	(株)ハーモニック・ドライブ・システムズ
(株)オートネットワーク技術研究所	オーストリアス (株)
オリンパス (株)	白石製造所 (株)
川崎重工業 (株)	華為技術日本 (株)
キヤノン (株)	ファナック (株)
協栄産業 (株)	(株)フォーラムエイト
(株)ココロ	(株)不二越
(株)小松製作所／開発本部	富士通 (株)
(株)ジェイテクト	富士ソフト (株)
(株)システムインフロンティア	古河電気工業 (株)
(株)システム計画研究所	(株)本田技術研究所／基礎技術研究センター
(国研) 新エネルギー・産業技術総合開発機構	前田建設工業 (株)技術研究所
新明和工業 (株)	マクソンジャパン (株)
スキューズ (株)	三井化学 (株)
セコム (株)／IS研究所	三菱重工業 (株)
ソニー (株)	三菱電機 (株)
ソフトサーボシステムズ (株)	村田製作所
ソフトバンク (株)	(株)明電舎
(株)ソミック石川	東芝製造所 (株)
(株)データベース	東芝製造所 (株)
(株)テムザック	(株)リアルビズ
(株)デンソーウェーブ	(株)リコー
(株)電通国際情報サービス	トヨタ自動車 (株)
東急建設 (株)	(株)豊田自動織機／技術・開発本部
(地鉄) 東京都立産業技術研究センター	(株)ロボット科学教育
東京ロボティクス (株)	(株)ロボティズ

●御入会に関するお問い合わせは、下記にお願い致します。
一般社団法人日本ロボット学会 事務局 会員係 TEL 03(3812)7594, FAX 03(3812)4628, E-mail: service@rsj.or.jp