Advanced Robotics, Volume 34, Issue 13, July 2020 is now available online on Taylor & Francis Online

The member of RSJ (individual members only) can download all the papers in Advanced Robotics from the Taylor and Francis On-line Journal site: Please log-in at the Membership Service page of RSJ WEB site and click “Advanced Robotics”.

Membership Services


Taylor & Francis Online - The new journals and reference work platform for
Taylor & Francis

The online platform for Taylor & Francis Online content

Advanced Robotics, Volume 34, Issue 13, July 2020

is now available online on Taylor & Francis Online

Special Issue on Robot Learning

This new issue contains the following articles:


Special Issue on Robot Learning

Wataru Takano Guest Editors:, Matthew Howard & Emel Demircan
Pages: 827-827 | DOI: 10.1080/01691864.2020.1786288

Full Papers

Machine learning for human movement understanding

Taizo Yoshikawa , Viktor Losing & Emel Demircan
Pages: 828-844 | DOI: 10.1080/01691864.2020.1786724


A library for constraint consistent learning

| Open Access
Jeevan Manavalan , Yuchen Zhao , Prabhakar Ray , Hsiu-Chin Lin & Matthew Howard
Pages: 845-857 | DOI: 10.1080/01691864.2020.1786723


Hierarchical and parameterized learning of pick-and-place manipulation from under-specified human demonstrations

Kun Qian , Huan Liu , Jaime Valls Miro , Xingshuo Jing & Bo Zhou
Pages: 858-872 | DOI: 10.1080/01691864.2020.1778523


Learning efficient push and grasp policy in a totebox from simulation

Peiyuan Ni , Wenguang Zhang , Haoruo Zhang & Qixin Cao
Pages: 873-887 | DOI: 10.1080/01691864.2020.1757504


Inverse reinforcement learning-based time-dependent A* planner for human-aware robot navigation with local vision

Shiying Sun , Xiaoguang Zhao , Qianzhong Li & Min Tan
Pages: 888-901 | DOI: 10.1080/01691864.2020.1753569


Multiple mini-robots navigation using a collaborative multiagent reinforcement learning framework

Piyabhum Chaysri , Konstantinos Blekas & Kostas Vlachos
Pages: 902-916 | DOI: 10.1080/01691864.2020.1757507


Study on visual machine-learning on the omnidirectional transporting robot

Adrian Zambrano , Kazuki Abe , Ikumi Suzuki , Theo Combelles , Kenjiro Tadakuma & Riichiro Tadakuma
Pages: 917-930 | DOI: 10.1080/01691864.2020.1762734